Производная в курсе алгебры средней школыРефераты >> Педагогика >> Производная в курсе алгебры средней школы
Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:
Уравнения касательной к кривой L в точке M имеют вид:
Т. к. разности x - x0, y - y0, z - z0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:
F'x(x - x0) + F'y(y - y0) + F'z(z - z0)=0
и для частного случая z = f(x, y):
Z - z0 = F'x(x - x0) + F'y(y - y0)
Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида
Решение:
Z'x = x / a = 2; Z'y = -y / a = -1
Уравнение искомой плоскости:
Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a
3. Использование производной в физике
3-1. Скорость материальной точки
Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ∆t = t - t0 и вычислим приращение пути: ∆s = f(t0 + ∆t) - f(t0). Отношение ∆s / ∆t называют средней скоростью движения за время ∆t, протекшее от исходного момента t0. Скоростью называют предел этого отношения при ∆t → 0.
Среднее ускорение неравномерного движения в интервале (t; t + ∆t) - это величина <a>=∆v / ∆t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:
То есть первая производная по времени (v'(t)).
Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct2 +Dt3 (C = 0,1 м/с, D = 0,03 м/с2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с2.
Решение:
v(t) = s'(t) = B + 2Ct + 3Dt2; a(t) = v'(t) = 2C + 6Dt = 0,2 + 0,18t = 2;
1,8 = 0,18t; t = 10 c
3-2. Теплоемкость вещества при данной температуре
Для повышения различных температур T на одно и то же значение, равное T1 - T, на 1 кг. данного вещества необходимо разное количество теплоты Q1 - Q, причем отношение
для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ΔQ = f(t + ΔT) - f(T). Отношение
называется средней теплоемкостью на отрезке [T; T + ΔT], а предел этого выражения при ∆T → 0 называется теплоемкостью данного вещества при температуре T.
3-3. Мощность
Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:.
4. Дифференциальное исчисление в экономике
4-1. Исследование функций
Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.
По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума:
1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума.
2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ≠ 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) < 0 и минимум, если f ''(x0) > 0.
Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).
Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:
π(q) = R(q) - C(q) = q2 - 8q + 10
Решение:
π'(q) = R'(q) - C'(q) = 2q - 8 = 0 → qextr = 4
При q < qextr = 4 → π'(q) < 0 и прибыль убывает
При q > qextr = 4 → π'(q) > 0 и прибыль возрастает
При q = 4 прибыль принимает минимальное значение.
Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.
4-2. Эластичность спроса
Эластичностью функции f(x) в точке x0 называют предел
Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если │ED│>1, то спрос называется эластичным, если │ED│<1, то неэластичным. В случае ED=0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.