Производная в курсе алгебры средней школыРефераты >> Педагогика >> Производная в курсе алгебры средней школы
Содержание:
Введение
Глава 1. Производная и ее применение
1. Понятие производной
1-1. Исторические сведения
1-2. Понятие производной
1-3. Правила дифференцирования и таблица производных
2. Геометрический смысл производной
2-1. Касательная к кривой
2-2. Касательная плоскость к поверхности
3. Использование производной в физике
3-1. Скорость материальной точки
3-2. Теплоемкость при данной температуре
3-3. Мощность
4. Дифференциальное исчисление в экономике
4-1. Исследование функций
4-2. Эластичность спроса
4-3. Предельный анализ
5. Производная в приближенных вычислениях
5-1. Интерполяция
5-2. Формула Тейлора
5-3. Приближенные вычисления
Глава 2. Производная в школьном курсе алгебры
1. Структура учебников
2. Понятие производной
2-1. Определение производной
2-2. Геометрический смысл производной
2-3. Непрерывность функции и предельный переход
3. Вычисление производной
3-1. Правила дифференцирования
3-2. Производные элементарных функций
4. Исследование функций
4-1. Возрастание и убывание функций
4-2. Экстремумы функций
4-3. Схема исследования функций
5. Приложения производной
5-1. Применение производной в физике
5-2. Приближенные вычисления
Заключение
Список использованной литературы
Введение
В первой главе курсовой работы речь пойдет о понятии производной, ее истории и областях ее применения. Во второй главе будет детально рассмотрен курс изучения производной трех учебников по алгебре и началам анализа для 10-11кл. : Алимова, Башмакова и под редакцией Колмогорова. Цель курсовой работы – раскрыть понятие производной, рассмотреть систему ее изучения в учебниках средней школы, охарактеризовать особенности изложения материала и дать рекомендации по поводу использования этих учебников.
Производная и ее применение
1. Понятие производной
1-1. Исторические сведения
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:
1) о разыскании касательной к произвольной линии
2) о разыскании скорости при произвольном законе движения
Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.
В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
1-2. Понятие производной
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка
Дадим аргументу x приращение ∆x, тогда функция y = f(x) получит приращение ∆y = f(x + ∆x) - f(x). Предел, к которому стремится отношение ∆y / ∆x при ∆x → 0, называется производной от функции f(x).
y'(x)=
1-3. Правила дифференцирования и таблица производных
C' = 0 |
(xn) = nxn-1 |
(sin x)' = cos x |
x' = 1 |
(1 / x)' = -1 / x2 |
(cos x)' = -sin x |
(Cu)'=Cu' |
(√x)' = 1 / 2√x |
(tg x)' = 1 / cos2 x |
(uv)' = u'v + uv' |
(ax)' = ax ln x |
(ctg x)' = 1 / sin2 x |
(u / v)'=(u'v - uv') / v2 |
(ex)' = ex |
(arcsin x)' = 1 / √ (1- x2) |
(logax)' = (logae) / x |
(arccos x)' = -1 / √ (1- x2) | |
(ln x)' = 1 / x |
(arctg x)' = 1 / √ (1+ x2) | |
(arcctg x)' = -1 / √ (1+ x2) |
2. Геометрический смысл производной
2-1. Касательная к кривой
Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.
Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ∆x, его значению соответствует значение функции y0 + ∆y = f(x0 + ∆x). Соответствующая точка - N(x0 + ∆x, y0 + ∆y). Проведем секущую MN и обозначим φ угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ∆y / ∆x = tg φ. Если теперь ∆x будет приближаться к 0, то точка N будет перемещаться вдоль кривой , секущая MN - поворачиваться вокруг точки M, а угол φ - меняться. Если при ∆x → 0 угол φ стремится к некоторому α, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол α, будет искомой касательной. При этом, ее угловой коэффициент:
То есть, значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).
Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.
2-2. Касательная плоскость к поверхности
Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.
Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями
x = φ(t); y = ψ(t); z = χ(t).