Методы и алгоритмы построения элементов систем статистического моделирования
Рефераты >> Математика >> Методы и алгоритмы построения элементов систем статистического моделирования

.

В данном случае компоненты вектора означают, что если процесс начинается с состояния , то общее среднее число шагов процесса до поглощения будет равно 3,34 и, соответственно, если процесс начинается с состояния , то - 2,26.

В конкретных задачах, конечно, более информативным результатом будет не количество шагов, а какие-либо временные или экономические показатели. Этот результат легко получить, если связать пребывание в каждом состоянии с соответствующими характеристиками. Очевидно, набор этих характеристик составит вектор, на который нужно умножить слева.

Так, если задать в нашем примере время пребывания в состоянии , а в состоянии - , то общее время до поглощения будет равно:

В случаях, когда марковская цепь включает несколько поглощающих состояний, возникают такие вопросы: в какое из поглощающих состояний цепь попадет раньше (или позже); в каких из них процесс будет останавливаться чаще, а в каких - реже? Оказывается, ответ на эти вопросы легко получить, если снова воспользоваться фундаментальной матрицей.

Обозначим через вероятность того, что процесс завершится в некотором поглощающем состоянии при условии, что начальным было состояние . Множество состояний снова образует матрицу, строки которой соответствуют невозвратным состояниям, а столбцы - всем поглощающим состояниям. В теории ДМЦ доказывается, что матрица В определяется следующим образом:

(8.9)

где

М - фундаментальная матрица с размерностью S;

R - блок фундаментальной матрицы с размерностью r.

Рассмотрим конкретный пример системы с четырьмя состояниями , два из которых- - поглощающие, а два - - невозвратные (рис.10):

Рис. 8.10. Система с четырьмя состояниями

Для наглядности и простоты вычислений обозначим переходные вероятности следующим образом:

; ;

Остальные значения вероятностей будут нулевыми. Каноническая форма матрицы перехода в этом случае будет выглядеть так:

Фундаментальная матрица после вычислений примет вид:

Тогда, согласно формуле (9), матрица вероятностей поглощения вычисляется так:

.

Поясним вероятностный смысл полученной матрицы с помощью конкретных чисел. Пусть, а. Тогда после подстановки полученных значений в матрицу получим:

Таким образом, если процесс начался в , то вероятность попадания его в равна , а в - . Отметим одно интересное обстоятельство: несмотря на то, что, казалось бы, левое поглощающее состояние (“левая яма”) находится рядом с , но вероятность попадания в нее почти в два раза меньше, чем в “удаленную яму” - . Этот интересный факт подмечен в теории ДМЦ, и объясняется он тем, что , то есть процесс имеет как бы “правый уклон”. Рассмотренная выше модель называется в теории ДМЦ моделью случайного блуждания. Такими моделями часто объясняются многие физические и технические явления и даже поведение игроков во время различных игр.

В частности, в рассмотренном примере объясняется тот факт, что более сильный игрок может дать заранее значительное преимущество (“фору”) слабому противнику и все равно его шансы на выигрыш будут более предпочтительными.

Кроме указанных выше средних характеристик вероятностного процесса с помощью фундаментальной матрицы можно вычислить моменты и более высоких порядков. В частности, дисперсия числа пребывания в том или ином состоянии - D определяется с помощью следующей матрицы:

(10)

где

- диагональная матрица, т.е. матрица, полученная из М путем оставления в ней лишь диагональных элементов и замены остальных элементов нулями. Например, приведенная выше матрица (7а) будет иметь вид:

В свою очередь, матрица М представляет собой матрицу, полученную из М путем возведения в квадрат каждого ее элемента, то есть для (7а) будем иметь:

Аналогичным образом определяема и дисперсия для общего количества раз пребывания в том или ином состоянии . Обозначим ее :

(11)


Страница: