Методы и алгоритмы построения элементов систем статистического моделирования
Рефераты >> Математика >> Методы и алгоритмы построения элементов систем статистического моделирования

Содержание

Введение

1. Метод статистического моделирования систем

2. Моделирование случайных величин и процессов

3. Основные понятия марковских процессов

4. Математический аппарат дискретных марковских цепей

Введение

В настоящее время нельзя назвать область человеческой дея­тельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

Метод моделирования широко применяют в таких областях, как автоматизация проектирования и организации в автоматизированных системах научных исследований, в системах исследования и проектирования, в системах массового обслуживания, анализ различных сторон деятельности человека, автоматизированное управление производственными и другими процессами. Важно подчеркнуть, что моделирование используется при проектировании, создании, внедрении, эксплуатации систем, а также на различных уровнях их изучения, начиная от анализа работы элементов и кончая исследованием системы в целом при их взаимодействии с окружающей средой.

1. Метод статистического моделирования систем

На этапе исследования и проектирования систем при построе­нии и реализации машинных моделей (аналитических и имитацион­ных) широко используется метод статистического моделирования (Монте-Карло), который базируется на использовании случайных чисел, т.е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Статистическое моделиро­вание представляет собой метод получения с помощью ЭВМ стати­стических данных о процессах, происходящих в моделируемой сис­теме. Для получения представляющих интерес оценки характеристик моделируемой системы S с учетом воздействий внешней среды Е статистические данные обрабатываются и классифицируются с ис­пользованием методов математической статистики,

Сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы S некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды Е, и реализации этого ал­горитма с использованием программно-технических средств ЭВМ.

Различают две области применения метода статистического моделирования: - для изучения стохастических систем;

- для решения детерминированных задач.

Основной идеей, которая используется для решения детерми­нированных задач методом статистического моделирования, являет­ся замена детерминированной задачи эквивалентной схемой некото­рой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. При такой замене погрешность уменьшается с увеличением числа испы­таний (реализации моделирующего алгоритма) N.

В результате статистического моделирования системы S полу­чается серия частных значений искомых величин или функций, ста­тистическая обработка которых позволяет получить сведения о по­ведении реального объекта или процесса в произвольные моменты времени. Если количество реализации N достаточно велико, то полу­ченные результаты моделирования системы приобретают статисти­ческую устойчивость и с достаточной точностью могут быть приня­ты в качестве оценок искомых характеристик процесса функциони­рования системы S.

При статистическом моделировании систем одним из основ­ных вопросов является учет стохастических воздействий. Количест­во случайных чисел, используемых для получения статистически устойчивой оценки характеристики процесса функционирования сис­темы S при реализации моделирующего алгоритма на ЭВМ, колеб­лется в достаточно широких пределах в зависимости от класса объ­екта моделирования, вида оцениваемых характеристик, необходимой точности и достоверности результатов моделирования. Для метода статистического моделирования на ЭВМ характерно, что большое число операций, а соответственно большая доля машинного времени расходуются на действия со случайными числами. Кроме того, ре­зультаты статистического моделирования существенно зависят от качества исходных (базовых) последовательностей случайных чисел. Поэтому наличие простых и экономичных способов формирования последовательностей случайных чисел требуемого качества во мно­гом определяет возможность практического использования машин­ного моделирования системы.

Понятие «статистическое моделирование» тесно связано с по­нятием «метод Монте-Карло» и почти ему тождественно.

Для решения задач методом Монте-Карло необходимо полу­чать на ЭВМ последовательность выборочных значений случайной величины с заданным распределением. Такой процесс принято на­зывать моделированием случайной величины. Случайные величины обычно моделируют с помощью преобразований одного или не­скольких независимых значений случайной величины а, равномерно распределенной в интервале (0,1). Независимые случайные величи­ны, равномерно распределенные в интервале (0,1).

Можно выделить следующие этапы моделирования случайных величин:

· генерирование N реализации случайной величины с требуемой функцией распределения;

· преобразование полученной величины, определяемой математи­ческой моделью;

· статистическая обработка реализации.

Особенностью первого этапа является то, что все методы для получения заданного распределения используют преобразование равномерно распределенной величины.

Конструктивно задаются случайная величина, равномерно распределенная в интервале (0,1), (0,l), далее производится ото­бражение и получается новая случайная величина с распределением, определяемым решаемой задачей, в общем случае может быть довольно сложным.

Далее следует получение некоторых характеристик. При пара­метрических оценках вычисляется некоторая функция . При непараметрическом задании функций распределения обычно вычисляются плотности или функции распределения. Чаще всего находят оценки математической ожидания. Погрешность оценки оп­ределяется дисперсией (если она известна) по числу экспериментов N.

В результате можно выделить следующие этапы (рис. 4.1):

- подготовка исходных данных (блок 1),

- генерирование равномерно распределенных случайных чисел (блок 2),

- преобразования для получения заданного закона распределения (блок 3);

- выполнение дополнительных преобразований в соответствии с проблем ной областью (блок 4);

- статистическая обработка (блок 5).


Страница: