Алгебраические свойства вещественных чиселРефераты >> Математика >> Алгебраические свойства вещественных чисел
4. Если ф-ия имеет в т. а, конечный предел, неравный нулю то найдется такая в т. а, в которой - ограниченная.
5. Если f(x), имеет в т. а отрицательный конечный предел, то найдется такое значение этой точки, в котором ф-ия отрицателная.
Бесконечно малые ф-ии и их свойства:
Опр:- бесконечно малая при , если
Свойства:
Пусть и являются бесконечно малыми при , а - ограничена, то бесконечно малыми является алгебраическая сумма ф-ий f(x) и j(x), произведения их и произведения ф-ий на ограниченную.
Представвление ф-ии, имеющей конечный предел.
Теорема: Для того чтобы ф-ия имела конечный предел А в точке х=а, небходимо и достаточно, чтобы =А+a(х), где a(х)- бесконечно малая при .
Доказательство:
Алгебраические свойства фунцций имеющих конечный предел в точке а.
Пусть , тогда:
1. Существует предел алгебраической суммы этих ф-ий,равный алгебраической сумме этих пределов.
2. Существует предел произведения ф-ий Þ произведение пределов
3. Если предел знаменателя неравен 0 и B неравно 0 то
Следствие.
Из 1 и 2 следует, что константы можно выносить за знак предела
Бесконечно большие и их свойства
Опр. Ф-ия называется бесконечно большой в точке а, если ее предел в этой точке равен бесконечности.
Свойства
Пусть и - бесконечно большие ф-ии в точке а.
Ф-ия j(х) имеет предел в точке а, отличный от 0
Ф-ия a(х) и b(ч) – бесконечно малые
Тогда справедливы следующие утверждения:
1. Произведение двух бесконечно больших ф-ий – бесконечно большая ф-ия.
2. Произведение бесконечно больших на ф-ию, имеющую отличный от нуля предел - бесконечно большая.
3. Ф-ия, обратная величине бесконечно большой – есть бесконечно малая, и наоборот.
Доказательство 2):
Доказательство 3):
Односторонние пределы в конечной точке и их связь с пределом в этой точке.
В определении предела окрестности точки а – симметричный интервал с центром в этой точке, т.е. требуется существование значений ф-ий как справа от точки а , так и слева от нее.
Когда а – граничная точка D(f)- такая ситуация невозможна. В этом, случае вводится понятие одностороннего предела, в определении которого фигурирует левые и правые полуокрестности точки а
- левосторонний предел, если в левой d полуокружности точки А, значения ф-ии лежат в e-окрестности точки А
Аналогично дается определение правостороннего предела.
Теорема: Для того, чтобы в точке а существовал предел ф-ии, необходимо и достаточно существования и равенства левостороннего и правостороннего пределов
Доказательство:
1. Необходимость:
2. Достаточность:
Числовые последовательности
Задача, по которой каждому N числу, ставится в соответствие единственное вещественное число – называется числовой последовательностью.
Числовая последовательность – ф-ия натурального аргумента.
Обозначается:
Последовательность, множество значений которой состоит из одного числа – стационарная.
Так как числовая последовательность – не симметричное множество, то для него не существует понятия четности, нечетности, периодичности. Зато сохраняются свойства, связанные с упорядоченностью.
Свойства:
1) Ограниченность.
a) последовательность ограничена сверху, если
b) последовательность ограничена снизу, если
c) последовательность ограничена, если
2) Монотонность.