Кореляционные методы
Рефераты >> Математика >> Кореляционные методы

ü метод максимального правдоподобия при ограниченной информации.

Под системой эконометрических уравнений обычно понимается система одновременных, совместных уравнений. Ее применение имеет ряд сложностей, которые связаны с ошибками спецификации модели. В виду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предполагаемой модели для описания экономических процессов.

4. Моделирование одномерных временных рядов.

Временной ряд – это совокупность значений какого – либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется по воздействием большого числа факторов, которые условно можно подразделить на три группы:

ü факторы, формирующие тенденцию ряда;

ü факторы, формирующие циклические колебания ряда;

ü случайные факторы.

Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.

Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.

Автокорреляция уровней ряда – корреляционная зависимость между последовательными уровнями временного ряда.

Лаг – число периодов, по которым рассчитывается коэффициент автокорреляции.

Свойства коэффициента автокорреляции:

ü Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда.

ü По знаку коэффициента автокорреляции нельзя делать вывод о возрастающем или убывающей тенденции в уровнях ряда.

Последовательность коэффициента автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного порядка. График зависимости ее значений от величины лага называется коррелограммой.

Аналитическое выравнивание временного ряда – это построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда.

Кусочно-линейные модели регрессии – разделение исходной совокупности на две подсовокупности (до времени t* и после момента t*) и построить отдельно по каждой подсовокупности уравнения линейной регрессии.

5. Изучение взаимосвязей по временным рядам.

Для того чтобы получить коэффициенты корреляции, характеризующие причино – следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду.

Методы исключения:

ü Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции. Эти методы предполагают непосредственное устранение трендовой компоненты Т из каждого уровня временного ряда. Два основных метода в данной группе – метод последовательной разности и метод отклонения от трендов;

ü Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимые переменные модели. В первую очередь это метод включения в модель регрессии по временным рядам фактора времени.

Методы автокорреляции остатков:

Первый метод – построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.

Второй метод – использование критерия Дарбина – Уотсона и расчет величины

Модель регрессии по скользящим средним – модель, где определяемые средние за два периода уровни каждого ряда, а затем по полученным усредненным уровням обычным МНК рассчитываем параметры а и b:

(yt+yt-1)/2=a+b(xt+xt-1)/2+ut/2

Коинтеграция – причино-следственная зависимость в уровнях двух (или более) временных рядов, которая выражается в совпадении или противоположенной направленности их тенденции и случайной колеблемости.

6. Динамические эконометрические модели.

Можно выделить два основных типа динамических эконометрических моделей. К модели первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значения переменной за прошлые периоды времени непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде.

Лаг – это величина, характеризующая запаздывание в воздействии фактора на результат.

Лаговая переменная – временной ряд самой факторной переменной, сдвинутый на один или более моментов времени.

Краткосрочный мультипликатор – коэффициент регрессии bo при переменной хt характеризует абсолютное изменение yt при изменении хt на 1 ед. своего измерения в некоторой фиксированный момент времени t, без учета воздействия лаговых значений фактора х.

Промежуточный мультипликатор – в момент (t+1) совокупное воздействие факторной переменной хt на результат yt составит (b0+b1) усл. ед., (t+2) это воздействие можно охарактеризовать суммой (b0+b1+b2) и т.д.

Величина b – это долгосрочный мультипликатор. Но показывает абсолютное изменение в долгосрочным периоде t+1 результата у под влиянием изменения на 1 ед. фактора х.

Список используемой литературы

1. Эконометрика под ред. И.И.Елисеевой М.: изд-во «Финансы и кредит», 2002.

2. Я.Р.Магнус, П.К.Катышев, А.А.Пересецкий «Эконометрика начальный курс» М.: изд-во «Дело» 2000.


Страница: