Российские нобелевские лауреатыРефераты >> Исторические личности >> Российские нобелевские лауреаты
П. и Басов предложили метод использования индуцированного излучения. Если возбужденные молекулы отделить от молекул, находящихся в основном состоянии, что можно сделать с помощью неоднородного электрического или магнитного поля, то тем самым можно создать вещество, молекулы которого находятся на верхнем энергетическом уровне. Падающее на это вещество излучение с частотой (энергией фотонов), равной разности энергий между возбужденным и основным уровнями, вызвало бы испускание индуцированного излучения с той же частотой, т.е. вело бы к усилению. Отводя часть энергии для возбуждения новых молекул, можно было бы превратить усилитель в молекулярный генератор, способный порождать излучение в самоподдерживающемся режиме.
П. и Басов сообщили о возможности создания такого молекулярного генератора на Всесоюзной конференции по радиоспектроскопии в мае 1952 г., но их первая публикация относится к октябрю 1954 г. В 1955 г. они предлагают новый «трехуровневый метод» создания мазера. В этом методе атомы (или молекулы) с помощью «накачки» загоняются на самый верхний из трех энергетических уровней путем поглощения излучения с энергией, соответствующей разности между самым верхним и самым нижним уровнями. Большинство атомов быстро «сваливается» на промежуточный энергетический уровень, который оказывается плотно заселенным. Мазер испускает излучение на частоте, соответствующей разности энергий между промежуточными и нижним уровнями.
За десять месяцев до того, как П. и Басов в 1954 г. опубликовали свою статью, Чарлз Х. Таунс, американский физик из Колумбийского университета, который независимо пришел к аналогичным выводам, построил действующий мазер, подтвердивший предсказания П. и Басова. Таунс использовал резонансную камеру, заполненную возбужденными молекулами аммиака, и получил необычайно сильное усиление микроволн на частоте 24000 мегагерц. В 1960 г. трехуровневый метод был подтвержден американским физиком Теодором Мейменом, работавшим в компании «Хьюз эйркрафт». Он получил усиление световых волн, используя в качестве резонансной камеры длинный кристалл синтетического рубина, на который была навита спиральная трубка с газом ксеноном. Газовый разряд сопровождался вспышками, способными вызвать индуцированное излучение. Поскольку Меймен использовал свет, его прибор получил название «лазер» (аббревиатура из первых букв английских слов: усиление света с помощью индуцированного (стимулированного) излучения – light amplification by. stimulated emission of radiation).
Будучи директором лаборатории колебаний в институте им. П.Н. Лебедева (с 1954 г.), П. создает две новые лаборатории – радиоастрономии и квантовой радиофизики. Он консультирует многочисленные научно-исследовательские институты по проблемам квантовой электроники и организует лабораторию радиоспектроскопии в Научно-исследовательском институте ядерных исследований при Московском государственном университете, профессором которого П. становится в 1957 г.
С середины 50-х гг. П. сосредоточивает усилия на разработке мазеров и лазеров и на поиске кристаллов с подходящими спектральными и релаксационными свойствами. Проведенные им подробные исследования рубина, одного из лучших кристаллов для лазеров, привели к широкому распространению рубиновых резонаторов для микроволновых и оптических длин волн. Чтобы преодолеть некоторые трудности, возникшие в связи с созданием молекулярных генераторов, работающих в субмиллиметровом диапазоне, П. предлагает новый открытый резонатор, состоящий из двух зеркал. Этот тип резонатора оказался особенно эффективным при создании лазеров в 60-е гг.
Нобелевская премия по физике 1964 г. была разделена: одна половина ее присуждена П. и Басову, другая – Таунсу «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера – лазера».
Находясь на посту заместителя директора Физического института АН СССР им. П.Н. Лебедева с 1973 г., П. продолжает расширять исследование по физике лазеров, в том числе по их применению для изучения многоквантовых процессов и термоядерного синтеза.
П. женат на Галине Алексеевне Шелепиной, географе по специальности, с 1941 г. У них один сын.
В 1960 г. П. избирают членом-корреспондентом, в 1966 т. – действительным членом и в 1970 г. – членом президиума АН СССР. Он почетный член Американской академии наук и искусств. В 1969 г. он был назначен главным редактором Большой Советской Энциклопедии. П. почетный профессор университетов Дели (1967) и Бухареста (1971). Советское правительство присвоило ему звание Героя Социалистического Труда (1969).
2.4. ФРАНК, Илья
23 октября 1908 г. – 22 июня 1990 г.
Нобелевская премия по физике, 1958 гсовместно с Павлом Черенковым и Игорем Таммом
Русский физик Илья Михайлович Франк родился в Санкт-Петербурге. Он был младшим сыном Михаила Людвиговича Франка, профессора математики, и Елизаветы Михайловны Франк. (Грациановой), по профессии физика. В 1930 г. он закончил Московский государственный университет по специальности «физика», где его учителем был С.И. Вавилов, позднее президент Академии наук СССР, под чьим руководством Ф. проводил эксперименты с люминесценцией и ее затуханием в растворе. В Ленинградском государственном оптическом институте Ф. изучал фотохимические реакции оптическими средствами в лаборатории А.В. Теренина. Здесь его исследования обратили на себя внимание элегантностью методики, оригинальностью и всесторонним анализом экспериментальных данных. В 1935 г. на основе этой работы он защитил диссертацию и получил степень доктора физико-математических наук.
По приглашению Вавилова в 1934 г. Ф. поступил в Физический институт им. П.Н. Лебедева АН СССР в Москве, где и работал с тех пор. Вавилов настаивал, чтобы Ф. переключился на атомную физику. Вместе со своим коллегой Л.В. Грошевым Ф. провел тщательное сравнение теории и экспериментальных данных, касающееся недавно открытого явления, которое состояло в возникновении электронно-позитронной пары при воздействии гамма-излучения на криптон.
Примерно в это же время Павел Черенков, один из аспирантов Вавилова в Институте им. Лебедева, начал исследование голубого свечения (позднее названного излучением Черенкова или излучением Вавилова – Черенкова), возникающего в преломляющих средах под воздействием гамма-лучей. Черенков показал, что это излучение не было еще одной разновидностью люминесценции, но он не мог объяснить его теоретически. В 1936 .1937 гг. Ф. и Игорь Тамм сумели вычислить свойства электрона, равномерно движущегося в некоторой среде со скоростью, превышающей скорость света в этой среде (нечто напоминающее лодку, которая движется по воде быстрее, чем создаваемые ею волны). Они обнаружили, что в этом случае излучается энергия, а угол распространения возникающей волны просто выражается через скорость электрона и скорость света в данной среде и в вакууме.
Одним из первых триумфов теории Ф. и Тамма было объяснение поляризации излучения Черенкова, которая, в отличие от случая люминесценции, была параллельна падающему излучению, а не перпендикулярна ему. Теория казалась столь удачной, что Ф., Тамм и Черенков экспериментально проверили некоторые ее предсказания, такие, как наличие некоторого энергетического порога для падающего гамма-излучения, зависимость этого порога от показателя преломления среды и форма возникающего излучения (полый конус с осью вдоль направления падающего излучения). Все эти предсказания подтвердились. В знак признания этой работы Ф. в 1946 г. был избран членом-корреспондентом АН СССР и вместе с Таммом, Черенковым и Вавиловым был награжден Государственной премией СССР.