Управление ресурсами предприятияРефераты >> Менеджмент >> Управление ресурсами предприятия
Внешние платежи
Vi-1,1 [fэi]
Vi-1
Vi-1,2 [fиi]
На внутреннее потребление
Величина DVi, представляющая чистый результат функционирования в i-м цикле (прибыль), используется для потребления обществом в форме различных налогов и как внутренний источник развития в форме инвестиций (экстенсивных и интенсивных). Данная структурно-логическая схема и выражения (1)-(2) представляют собой модель развития организационно-экономической системы в общем виде. Для практического использования этой модели необходимо определить конкретный вид функций fэi и fиi. Исходя из смысла рассматриваемой задачи, эти функции должны быть непрерывно возрастающими на области определения. Отсюда можно заключить, что возможны три типа этих функций. Первый тип - скорость роста постоянна, т.е. функция является линейной. Второй тип - скорость роста возрастает, т.е. функция нелинейная и расположена выше соответствующей линейной. Третий тип - скорость роста убывающая, т.е. функция нелинейная и расположена ниже соответствующей линейной. Рассмотрим ситуацию, когда функции fэi и fиi являются линейными, а модель развития называется линейной и имеет вид
Такая модель характеризует переходный тип развития организации, когда система переходит от экстенсивного к интенсивному типу развития. Как известно, экстенсивный тип развития имеет место тогда, когда прирост валового продукта в i-м цикле DVi обеспечивается за счет увеличения по сравнению с (i - 1)-м циклом массы средств производства без изменения по сравнению с (i -1)-м циклом интенсивности их использования, а интенсивный тип развития осуществляется тогда, когда прирост DVi обеспечивается за счет роста по сравнению с (i - 1)-м циклом интенсивности средств производства без изменения по сравнению с (i - 1)-м циклом массы средств производства. Эта модель может быть использована в практике менеджмента для стратегического планирования темпов развития организации на основе оценки эффективности освоения новых сегментов рынка. Данные о конкретных значениях функций fэi и fиi формируются в процессе маркетинговых исследований по тем сегментам рынка, которые намечают осваивать. В рамках линейной модели рассчитываются возможные приросты прибыли (DVi ) за ряд циклов, которые можно ориентировочно иметь, осуществляя инвестирование свободного (или заемного) капитала в определенные (новые для данной организации) сегмента рынка. Там, где динамика роста величины DVi оказывается наилучшей при прочих равных условиях (равный начальный капитал V0 и т.п.), осуществляются необходимые организационные мероприятия по созданию дочерней фирмы или организации. Определение наиболее высоких темпов роста величины DVi осуществляется на основе расчета оптимальных значений параметров управления в рамках линейной модели развития следующим образом. Учитывая ограничение (4), целевую функцию (3) можно записать так
Осуществляя дифференцирование по параметру управления Vi-1,1, определим оптимальное его значение
Соответственно, оптимальное значение другого параметра управления Vi-1,2 можно определить по формуле
Тогда максимум прироста валового продукта, т.е. прибыли DVi в i-м цикле будет равен
Оценивая DVi за определенное число циклов m для одного и того же значения начального капитала V0 для разных сегментов рынка, можно сделать конкретные выводы о предпочтительности вложения свободных (или заемных) средств в конкретный рыночный сегмент.
Практическая часть.
Вариант №13
Исходные данные:
Число оцениваемых сегментов рынка |
2 |
Количество циклов функционирования |
3 |
Коэффициенты эффективности экстенсивных инвестиций по сегментам |
0,4; 0,9 у.е. средств производства/ед. инвестиций |
Объём начального капитала |
52 у.е. |
Последовательно осуществляем расчет для 1-го и 2-го сегмента рынка.
Расчёт для первого сегмента рынка.
Цикл №1
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0=F1=1, F2=2, F3=3, F4=3+2=5, F5=5+3=8, F6=8+5=13, F7=13+8=21, F8=34. Отсюда определяем n = 8. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn=34, Fn-1=21, Fn-2=13, Fn-3=8, Fn-4=5, Fn-5=3, Fn-6=2, Fn-7=1. Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле
Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке снова оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле
Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле