Управление инвестиционными рискамиРефераты >> Инвестиции >> Управление инвестиционными рисками
где - ожидаемая доходность инвестиционного актива; ri - доходности инвестиционного актива при различных вариантах; pi - вероятности соответствующих вариантов; n - количество вариантов.
Ожидаемая доходность инвестиционного актива находится по следующей формуле:
(2.4)
где ri - доходности инвестиционного актива при различных вариантах; pi - вероятности соответствующих вариантов; n - количество вариантов.
Также измерителем риска является фактора «бета». Коэффициент «бета» бумаги показывает ее чувствительность к колебаниям рынка в будущем. Для оценки «беты» должны быть учтены всевозможные источники подобных колебаний. Затем необходимо оценить, как отреагирует цена бумаги на каждое из этих изменений, а также вероятность такого изменения.
«Бету» бумаги можно интерпретировать как наклон графика рыночной модели. Если этот коэффициент был постоянным от периода к периоду, то «историческую бету» (historical beta) бумаги можно оценить путем сопоставления прошлых данных о соотношении доходности рассматриваемой бумаги и доходности рынка. Статистическая процедура для получения таких апостериорных (прошлых) значений коэффициента «бета» называется простой линейной регрессией (simple linear regression), или методом наименьших квадратов. Как становится ясно, истинное значение коэффициента «бета» ценной бумаги невозможно установить, можно лишь оценить это значение.
Модели, рассматриваемые в финансовом анализе, связывают случайную величину r с величинами, которые объективно характеризуют финансовый рынок в целом. Такие величины называются факторами. В зависимости от постановки задачи факторы могут считаться как случайными, так и детерминированными, т.е. точно известными величинами.
В самом простом случае выделяется один фактор. Тогда статистическая модель имеет вид:
. (2.5)
Здесь и - постоянные (неизвестные параметры), - случайная величина, удовлетворяющая условию: , где - условное математическое ожидание случайной величины относительно F. Из этого предположения следует, что и безусловное математическое ожидание величины также равно нулю. Коэффициент показывает чувствительность доходности ценной бумаги к фактору F. Коэффициент называют сдвигом.
Одна из самых распространенных моделей использует в качестве фактора F доходность рыночного индекса.
Рыночная модель (market mode) – это один из путей отражения взаимосвязи доходности акции за определенный период с доходностью за тот же период акции на рыночный индекс:
ri = aiI + biI rI + eiI, ( 2.6)
где ri - доходность ценной бумаги i за данный период; rI - доходность на рыночный индекс I за этот же период; aiI - коэффициент смещения; biI - коэффициент наклона; eiI - случайная погрешность.
Как видно из выражения, при условии положительности коэффициента наклона, чем выше доходность на рыночный индекс, тем выше доходность ценной бумаги. “Бета” коэффициент исчисляется следующим образом:
(2.7)
где siI, обозначает ковариацию между доходностью акции i и доходностью на рыночный индекс, а sI2 обозначает дисперсию (квадрат стандартного отклонения) доходности на индекс.
Исходя из рыночной модели, общий риск ценной бумаги i, измеряемый ее дисперсией и обозначенный как s2i , состоит из двух частей: (1) рыночный (или систематический) риск (market risk); (2) собственный (или несистематический) риск (unique risk). Таким образом, s2i равняется следующему выражению:
(2.8)
где s2i обозначает дисперсию доходности на рыночный индекс, b2iIs2i - рыночный риск ценной бумаги i, а s2 ei — собственный риск ценной бумаги i, мерой которого является дисперсия случайной погрешности eiI.
В рыночной модели общий риск портфеля, измеряемый дисперсией его доходности выражается следующим образом:
, (2.9)
где , .
В общем случае можно заметить, что чем более диверсифицирован портфель (т.е. чем большее количество ценных бумаг в него входит), тем меньше каждая доля Хi. При этом значение не меняется существенным образом, за исключением случаев преднамеренного включения в портфель ценных бумаг с относительно низким или высоким значением «беты». Так как «бета» портфеля является средним значением «беты» ценных бумаг, входящих в портфель, то нет оснований предполагать, что увеличение диверсификации портфеля вызовет изменение «беты» портфеля и, таким образом, рыночного риска портфеля в какую-либо сторону. Таким образом, можно утверждать, что диверсификация приводит к усреднению рыночного риска.
Совершенно другая ситуация возникает при рассмотрении собственного риска портфеля. Если предположить, что во все ценные бумаги инвестировано одинаковое количество средств, то доля Х составит 1/N. Если портфель становится более диверсифицированным, то количество бумаг в нем (равное N) становится больше. Это также означает, что величина 1/N уменьшается, что приводит к уменьшению собственного риска портфеля. Можно сделать следующее заключение: диверсификация существенно уменьшает риск.
Другим фактором, часто используемым в линейных регрессионных моделях, является доходность некоторого выделенного портфеля ценных бумаг, который называется касательным. Каждому портфелю соответствует случайная величина rp – доходность.
(2.10)
- риск портфеля.
Оптимальной для любого инвестора стратегией в этой модели оказывается инвестирование части средств в касательный портфель, а части – в безрисковые облигации. Либо наоборот: получение займа для дополнительного инвестирования в касательный портфель. Чем меньше будет доля средств, вложенных в рисковые активы по отношению к безрисковым, тем меньше будет величина риска.