Управление инвестиционными рисками
Рефераты >> Инвестиции >> Управление инвестиционными рисками

Приведенная выше модель может быть использована инвесторами и трейдерами для сравне­ния ценных бумаг сходного кредитного качества.

Например, при уровне остаточной стоимости 12% от номинальной стоимости предполагаемая годовая ве­роятность дефолта по российским еврооблигациям в начале марта составляла 9 — 11%.

В то же время по ОВГВЗ составляет от 11% (по 7-му траншу) до 25% (по 4-му траншу), что говорит о несоот­ветствии оценки ценных бумаг участниками рынка и агентством Standard & Poor's, которое недавно урав­няло рейтинги ОВГВЗ и еврооблигаций на уровне ССС+.

Коммерческими банками такая модель может быть использована для расчета маржи над безрисковой про­центной ставкой для заемщиков с различным рейтингом.

Рассмотрим ситуацию, когда в банке существует си­стема внутренних рейтингов заемщиков и некоторые кредиты имеют частичное покрытие, которое может рассматриваться как остаточная стоимость в случае неисполнения заемщиком своих обязательств.

Предполагается выдать кредит заемщику с рейтин­гом, предполагающим 10%-ю вероятность неисполне­ния обязательств. Кредит подлежит погашению через год с выплатой половины суммы через полгода и ос­тавшейся суммы через год.

Если безрисковая ставка в данной валюте составля­ет 15%, а остаточная стоимость 20% от суммы кредита, то согласно приведенной модели процентная ставка должна составлять 23,85%.

В случае изменения рейтинга заемщика (оценки ве­роятности неисполнения обязательств) с помощью этой же модели можно переоценить стоимость креди­та. Например, если через 3 месяца после выдачи кре­дита рейтинг заемщика предполагает вероятность не­исполнения обязательств 15%, а остаточная стоимость оценивается в 10%, то стоимость такого кредита будет составлять 97,3%.

Рассмотрим еще один пример, где применяется данная модель. Компания обращается в банк за возоб­новлением кредита. С момента подачи последней за­явки кредитоспособность компании, по мнению банка, упала и риск кредитования возрос, по крайней мере, на 10 процентных пунктов, до 20%.

По сравнению с предыдущим разом в случае прода­жи займа на рынке вы получили бы только 90 центов/долл. При той же оценке уровня остаточной стои­мости изложенная выше методология предлагает вам повысить ставку займа на 10,4 процентных пунктов, с 23,85 до 34,25%.

Таким образом, модель оценки вероятности дефол­та может быть инструментом оценки рыночной стоимо­сти существующих долгов, а также механизмом опре­деления процентных ставок по кредитам с учетом рис­ка заемщика.

Для трейдеров наряду с доходностью к по­гашению данная модель может служить удобным инст­рументом для сравнения привлекательности облига­ций различных эмитентов, позволяя численно опреде­лить уровень риска дефолта.

Для коммерческих банков применение данной методологии осложнено российскими реалиями, на­пример:

• дифференциацией отношений компаний с кредито­рами: одним платят, другим нет;

• отсутствием внутрироссийских рейтингов компаний и др.

Тем не менее внутри банков рейтинги заемщиков должны существовать, поэтому некоторые эле­менты предложенного подхода могут быть использованы как элементы в создании внутри­банковских методик оценки рисков.

Рассмотрим как производится оценка доходности и риска ценных бумаг с фиксированным доходом, в частности векселей и облигаций.

Сейчас трудно найти работу, в которой бы проводился вероятностный анализ доходности и риска долговых обязательств. Скорее всего, это связано с тем, что доходность такого рода бумаг не лежит в произвольно широких пределах, как это имеет место для акций и паев взаимных фондов на акциях. Моделируя ценные бумаги с фиксированным доходом, мы знаем параметры выпуска (дата выпуска, цена размещения, дата погашения, число купонов, их размер и периодичность). Единственное, чего мы не знаем, - это то, как будет изменяться котировка этих бумаг на рынке в зависимости от текущей стоимости заемного капитала, которая косвенно может быть оценена уровнем федеральной процентной ставки страны, где осуществляются заимствования.

Идея вероятностного анализа долговых обязательств, представленная здесь, состоит в том, чтобы отслоить от истории сделок с долговыми обязательствами неслучайную составляющую цены (тренд). Тогда оставшаяся случайная составляющая (шум) цены может рассматриваться нами как случайный процесс с непрерывным временем, в сечении которого лежит нормально распределенная случайная величина с нулевым средним значением и со среднеквадратичным отклонением (СКО), равным s(t), где t – время наблюдения случайного процесса. Ожидаемый вид функции s(t) будет исследован нами позже.

Получим аналитический вид трендов долговых обязательств и для начала рассмотрим простейшие случаи таких выражений, которые имеют место для дисконтных бескупонных облигаций и дисконтных векселей.

Пусть бумага данного вида эмитирована в момент времени TI по цене N0 < N, где N – номинал ценной бумаги. Тогда разница N – N0 составляет дисконт по бумаге. Параметрами выпуска также определен срок погашения бумаги TM, когда владельцу бумаги возмещается ее номинал в денежном выражении.

Пусть t – момент времени, когда инвестор собирается приобрести бумагу. Определим ее справедливую рыночную цену С(t). Это выражение и является трендом для случайного процесса цены бумаги.

Пусть время в модели дискретно, а интервал дискретизации - год. Бумага выпускается в обращение в начале первого года, а гасится в конце n – го. Тогда рыночная цена дисконтного инструмента, приобретаемого в начале (k+1) – го года обращения бумаги, имеет вид:

(3.6)

где r – внутренняя норма доходности долгового инструмента, определяемая по формуле:

(3.7)

Формула (3.6) предполагает, что на рынке имеются бумаги с той же самой внутренней нормой доходности, что и наша, которые при этом имеют реинвестируемые купонные платежи, а период реинвестирования равен одному году. Если бы не так, то расчет следовало бы вести по формуле, предполагающей, что период реинвестирования платежей совпадает с периодом обращения дисконтного инструмента.

Получим аналоги формул (3.6) и (3.7) для непрерывного времени, предполагая по ходу, что реинвестирование также идет в непрерывном времени с периодом бесконечно малой длительности. Это делается следующим образом. Разобъем весь период обращения ценной бумаги [TI, TM] на интервалы числом n и длительностью

(3.8)

Обозначим t = TI + k * D и применим к расчету рыночной цены бумаги формулы (3.6) и (3.7). Это дает:

, (3.9)

(3.10)

Предельный переход в (3.9) и (3.10) при D ® 0 дает:

(3.11)

(3.12)

Рис. 3.1.1. Функция справедливой цены дисконтной облигации


Страница: