Метод экспертных оценок
Рефераты >> Менеджмент >> Метод экспертных оценок

Матрица неотрицательная, поскольку все ее элементы (5.39) неотрицательны. Матрица называется неразложимой, если перестановкой рядов (строк и одно­именных столбцов) ее нельзя привести к треугольному виду [12]

(5.48)

где - неразложимые подматрицы матрицы X. Пред­ставление матрицы Х в виде (5.48) означает разбиение объектов на l доминирующих множеств [12]

(5.49)

При 1=n матрица Х неразложима, т. е. существует толь­ко одно доминирующее множество, совпадающее с ис­ходным множеством объектов. Разложимость матрицы Х означает, что среди экспертов имеются большие раз­ногласия в оценке объектов.

Если матрица Х неразложима, то вычисление коэф­фициентов относительной важности по­зволяет определить, во сколько раз один объект превос­ходит другой объект по сравниваемым показателям. Вычисление коэффициентов относительной важности объектов позволяет одновременно построить ранжиров­ку объектов. Объекты ранжируются так, что первым объ­ектом считается объект, у которого коэффициент относи­тельной важности наибольший. Полная ранжировка определяется цепочкой неравенств [12]

из которой следует

Если матрица Х является разложимой, то определить коэффициенты относительной важности можно только для каждого множества . Для каждой матрицы определяется максимальное собственное число и соответ­ствующий этому числу собственный вектор. Компоненты собственного вектора и есть коэффициенты относитель­ной важности объектов, входящих в множество . По этим коэффициентам осуществляется ранжировка объ­ектов данного множества. Общая ранжировка объектов дается соотношением [12]

Таким образом, если матрица Х неразложима, то по результатам парного сравнения объектов возможно как измерение предпочтительности объектов в шкале отно­шений, так и в шкале порядка (ранжирование). Если же матрица Х разложима, то возможно только ранжиро­вание объектов.

Следует отметить, что отношение предпочтения может быть выражено любым положительным числом С. При этом должно выполняться условие В частности, можно выбрать С=2 так, что если , то если то и если , то .

3.5. Определение взаимосвязи ранжировок

При обработке результатов ранжирования могут возник­нуть задачи определения зависимости между ранжиров­ками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокуп­ности проблем или взаимосвязи между двумя призна­ками.

В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет яв­ляться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.

Коэффициент ранговой корреляции Спирмена опре­деляется формулой [12]:

(5.50)

где - взаимный корреляционный момент первой и второй ранжировок, - дисперсии этих ранжиро­вок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:

(5.51)

(5.52)

где n – число ранжируемых объектов, - ранги в первой и второй ранжировках соответственно, - средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:

(5.53)

Вычислим оценки средних рангов и дисперсий в пред­положении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представ­ляют собой суммы натуральных чисел от единицы до n, поделенные на n. Следовательно, средние ранги для обе­их ранжировок одинаковы и равны [12]

(5.54)

При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под зна­ком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натураль­ных чисел и их квадратов не зависит от порядка (пере­становки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]

(i=1,2). (5.55)

Подставляя значение из (5.51) и из (5.55) в формулу (5.50), получим оценку коэффициента ранго­вой корреляции Спирмена [12]

(5.56)

Для проведения практических расчетов удобнее поль­зоваться другой формулой для коэффициента корреля­ции Спирмена. Ее можно получить из (5.56), если вос­пользоваться тождеством [12]

(5.57)

В равенстве (5.57) первые две суммы в правой части, как это следует из выражения (5.55), одинаковы и рав­ны [12]


Страница: