Метод экспертных оценокРефераты >> Менеджмент >> Метод экспертных оценок
Вычислим максимальное значение оценки дисперсии для случая отсутствия связанных рангов (все объекты различны). Предварительно покажем, что оценка математического ожидания зависит только от числа объектов и количества экспертов. Подставляя в (5.16) значение из (5.14), получаем [12]
(5.18)
Рассмотрим вначале суммированные по i при фиксированном j. Это есть сумма рангов для j-го эксперта. Поскольку эксперт использует для ранжировки натуральные числа от 1 до n, то, как известно, сумма натуральных чисел от 1 до n равна [12]
(5.19)
Подставляя (5.19) в (5.18), получаем [12]
(5.20)
Таким образом, среднее значение зависит только от числа экспертов m и числа объектов n.
Для вычисления максимального значения оценки дисперсии подставим в (5.15) значение из (5.14) и возведем в квадрат двучлен в круглой скобке. В результате получаем [12]
(5.21)
Учитывая, что из (5.18) следует
получаем [12]
(5.22)
Максимальное значение дисперсии достигается при наибольшем значении первого члена в квадратных скобках. Величина этого члена существенно зависит от расположения рангов - натуральных чисел в каждой строке i. Пусть, например, все m экспертов дали одинаковую ранжировку для всех n объектов. Тогда в каждой строке матрицы будут расположены одинаковые числа. Следовательно, суммирование рангов в каждой i-u строке дает m-кратное повторение i-ro числа [12]:
Возводя в квадрат и суммируя по i, получаем значение первого члена в (5.22) [12]:
(5.23)
Теперь предположим, что эксперты дают несовпадающие ранжировки, например, для случая n=m все эксперты присваивают разные ранги одному объекту. Тогда [12]
Сравнивая это выражение с при m=n, убеждаемся, что первый член в квадратных скобках формулы (9) равен второму члену и, следовательно, оценка дисперсии равна нулю.
Таким образом, случай полного совпадения ранжировок экспертов соответствует максимальному значению оценки дисперсии. Подставляя (5.23) в (5.22) и выполняя преобразования, получаем [12]
(5.24)
Введем обозначение [12]
(5.25)
Используя (5.25), запишем оценку дисперсии (5.15) в виде [12]
(5.26)
Подставляя (5.24), (5.25), (5.26) в (5.17) и сокращая на множитель (n—1), запишем окончательное выражение для коэффициента конкордации [12]
(5.27)
Данная формула определяет коэффициент конкордации для случая отсутствия связанных рангов.
Если в ранжировках имеются связанные ранги, то максимальное значение дисперсии в знаменателе формулы (5.17) становится меньше, чем при отсутствии связанных рангов. Можно показать, что при наличии связанных рангов коэффициент конкордации вычисляется по формуле [12]:
(5.28)
где
(5.29)
В формуле (5.28) - показатель связанных рангов в j-й ранжировке, - число групп равных рангов в j-й ранжировке, - число равных рангов в k-й группе связанных рангов при ранжировке j-м экспертом. Если совпадающих рангов нет, то =0, =0 и, следовательно, =0. В этом случае формула (5.28) совпадает с формулой (5.27).
Коэффициент конкордации равен 1, если все ранжировки экспертов одинаковы. Коэффициент конкордации равен нулю, если все ранжировки различны, т. е. совершенно нет совпадения.
Коэффициент конкордации, вычисляемый по формуле (5.27) или (5.28), является оценкой истинного значения коэффициента и, следовательно, представляет собой случайную величину. Для определения значимости оценки коэффициента конкордации необходимо знать распределение частот для различных значений числа экспертов m и количества объектов n. Распределение частот для W при и вычислено в [52]. Для больших значений m и n можно использовать известные статистики. При числе объектов n>7 оценка значимости коэффициента конкордации может быть произведена по критерию . Величина Wm(n—1) имеет распределение с v=n –1 степенями свободы.
При наличии связанных рангов распределение с v=n—1 степенями свободы имеет величина [12]:
(5.30)
Энтропийный коэффициент конкордации определяется формулой (коэффициент согласия) [12]:
(5.31)
где Н – энтропия, вычисляемая по формуле
(5.32)
а - максимальное значение энтропии. В формуле для энтропии - оценки вероятностей j-го ранга, присваиваемого i-му объекту. Эти оценки вероятностей вычисляются в виде отношения количества экспертов , приписавших объекту ранг j к общему числу экспертов [12].
(5.33)
Максимальное значение энтропии достигается при равновероятном распределении рангов, т. е. когда . Тогда [12]