Метод экспертных оценокРефераты >> Менеджмент >> Метод экспертных оценок
(5.34)
Подставляя это соотношение в формулу (5.32), получаем [12]
(5.35)
Коэффициент согласия изменяется от нуля до единицы. При расположение объектов по рангам равновероятно, поскольку в этом случае . Данный случай может быть обусловлен либо невозможностью ранжировки объектов по сформулированной совокупности показателей, либо полной несогласованностью мнений экспертов. При , что достигается при нулевой энтропии (H=0), все эксперты дают одинаковую ранжировку. Действительно, в этом случае для каждого фиксированного объекта все эксперты присваивают ему один и тот же ранг j, следовательно, , a Поэтому и H=0.
Сравнительная оценка дисперсионного и энтропийного коэффициентов конкордации показывает, что эти коэффициенты дают примерно одинаковую оценку согласованности экспертов при близких ранжировках. Однако если, например, вся группа экспертов разделилась в мнениях на две подгруппы, причем ранжировки в этих подгруппах противоположные (прямая и обратная), то дисперсионный коэффициент конкордации будет равен нулю, а энтропийный коэффициент конкордации будет равен 0,7. Таким образом, энтропийный коэффициент конкордации позволяет зафиксировать факт разделения мнений на две противоположные группы. Объем вычислений для энтропийного коэффициента конкордации несколько больше, чем для дисперсионного коэффициента конкордации.
3.4. Обработка парных сравнений объектов
При решении задачи оценки большого числа объектов (ранжирование, определение относительных весов, балльная оценка) возникают трудности психологического характера, обусловленные восприятием экспертами множества свойств объектов. Эксперты сравнительно легко решают задачу парного сравнения объектов. Возникает вопрос, каким образом получить оценку всей совокупности объектов на основе результатов парного сравнения, не накладывая условия транзитивности? Рассмотрим алгоритм решения этой задачи. Пусть m экспертов производят оценку всех пар объектов, давая числовую оценку [12]
(5.36)
Если при оценке пары экспертов высказались в пользу предпочтения экспертов высказались наоборот и экспертов считают эти объекты равноценными, то оценка математического ожидания случайной величины равна [12]
(5.37)
Общее количество экспертов равно сумме
(5.38)
Определяя отсюда и подставляя его в (5.37), получаем [12]
(5.39)
Очевидно, что Совокупность величин образует матрицу на основе которой можно построить ранжировку всех объектов и определить коэффициенты относительной важности объектов.
Введем вектор коэффициентов относительной важности объектов порядка t следующей формулой [12]:
(5.40)
где - матрица математических ожиданий оценок пар объектов, - вектор коэффициентов относительной важности объектов порядка t. Величина равна [12]
(5.41)
Коэффициенты относительной важности первого порядка есть относительные суммы элементов строк матрицы X. Действительно, полагая t=1, из (5.40) получаем [12]
(5.42)
Коэффициенты относительной важности второго порядка (t=2} есть относительные суммы элементов строк матрицы X2 [12].
(5.43)
Если матрица Х неотрицательна и неразложима, то при увеличении порядка величина сходится к максимальному собственному числу матрицы Х [12]
(5.44)
а вектор коэффициентов относительной важности объектов стремится к собственному вектору матрицы X, соответствующему максимальному собственному числу
(5.45)
Определение собственных чисел и собственных векторов матрицы производится решением алгебраического уравнения [12]
(5.46)
где Е—единичная матрица, и системы линейных уравнений [12]
(5.47)
где k – собственный вектор матрицы X, соответствующий максимальному собственному числу . Компоненты собственного вектора есть коэффициенты относительной важности объектов, измеренные в шкале отношений.
С практической точки зрения вычисление коэффициентов относительной важности объектов проще производить последовательной процедурой по формуле (5.40) при t=1, 2, … Как показывает опыт, 3-4 последовательных вычислений достаточно, чтобы получить значения и k, близкие к предельным значениям, определяемым уравнениями (5.46), (5.47).