Сегментация изображений гистологических объектов
Разработана система координат описания цвета, специализированная на выполнении операций математической морфологии на цветных изображениях. Использование этой системы координат даёт возможность улучшить качество получаемого результата и увеличить скорость по сравнению с обработкой в традиционных системах координат.
Экономическая и практическая значимость полученных результатов
Использование алгоритмов сегментации гистологических объектов способствует повышению эффективности работы исследователя и получению более качественных и точных результатов измерения характеристик гистологических объектов.
Разработанные алгоритмы и программный комплекс, используемые в настоящее время в научных и диагностических процессах, являются экономически эффективными за счёт снижения затрат на ручной труд при измерении и классификации гистологических объектов.
Алгоритмы и программный комплекс анализа и обработки медицинских изображений внедрены и используются в учебных, научных и диагностических процессах двух медицинских вузов (Минском государственном медицинском институте, Гродненском государственном медицинском институте) и трёх НИИ (Бел НИИ эпидемиологии и микробиологии (г.Минск), Бел НИИ онкологии медицинской радиологии (г.Минск), Институте биохимии НАН РБ (г.Гродно)) Республики Беларусь, а также в двух медицинских вузах (Саратовской государственной медицинской академии, Ярославльской государственной медицинской академии), Институте физиологии детей и подростков РАМН (г.Москва) и Всероссийском центре пластической хирургии глаза МПЗП РФ (г.Уфа) Российской Федерации.
Разработанные методы и алгоритмы могут также включаться в существующие либо разрабатываемые коммерческие системы анализа и обработки гистологических объектов как общеупотребительные, так и узкоспециализированные.
Основные положения диссертации, выносимые на защиту:
- классификация гистологических объектов для определения метода сегментации изображений гистологических объектов;
- алгоритм полутонового утоньшения объектов на слабоконтрастных изображениях гистологических объектов;
- алгоритм сегментации и отслеживания сосудов или волокон при больших оптических увеличениях;
- алгоритм морфологической сегментации отдельных клеток;
- алгоритм сегментации клеток со сложным фоном, основанный на объединении областей;
- алгоритм определения клеток на бинарном изображении, полученном с помощью пороговой сегментации;
- координаты описания цвета, предназначенные для работы методов математической морфологии и других сложных полутоновых операций на изображениях гистологических препаратов.
Личный вклад соискателя
Все предлагаемые алгоритмы были разработаны и программно реализованы лично автором. Научный руководитель принимал участие в постановке задач, определении возможных путей решения и их предварительном анализе.
Апробация результатов диссертации
Основные результаты работы докладывались и обсуждались на конференциях и симпозиумах: научно-технической конференции по компьютерной графике и анимации (Минск, 1993), 8th International Symposium on Diagnostic Quantitative Pathology. (Amsterdam, The Netherlands, 1994), Третей научной конференции по распознаванию и анализу изображений (Минск, 1995), I конгрессе Международной ассоциации патологоанатомов (г.Москва, 1995), республиканской научной конференции молодых ученых и студентов “Актуальные проблемы современной медицины” (Минск, 1997), System and signals in Intelligent Technologies (Минск, 1998), V международной конференции “Компьютерный анализ данных и моделирование” (8-12 июня 1998, Минск), Fifth International Conference Pattern Recognition and Information Processing PRIP99 (Минск, 18 - 20 мая 1999).
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, кратко излагается состояние предметной области, нерешенные задачи и даётся краткая характеристика работы.
В первой главе выполнен анализ состояния предметной области: дано описание гистологических объектов и особенностей их изображений, обзор существующих методов систем обработки медицинских изображений, а также описание основных направлений развития алгоритмов сегментации объектов. По результатам проведённого анализа можно сделать следующие выводы.
1. Большинство объектов на гистологических препаратах представлены слабоконтрастными изображениями и характеризуются большой вариабельностью геометрических и оптических характеристик, в связи с чем при анализе подобных изображений возникают определенные трудности. Поэтому для выбора эффективных методов сегментации требуется дополнительная классификация этих объектов.
2. Автоматический анализ изображений гистологических объектов слабо освещён в литературе.
3. Гистологические объекты характеризуются слабой контрастностью, широким спектром форм и размеров. Поэтому их специфика вносит определенные особенности на этапе сегментации.
4. Можно определить три основных класса методов сегментации объектов на гистологических изображениях: пороговые, морфологические, методы наращивания областей. Хотя существует ещё ряд частных методов сегментации, не относящихся к ним.
5. Тема сегментации медицинских изображений в настоящее время является актуальной и очень важна в диагностических и научных исследованиях.
На основе результатов анализа выдвигается гипотеза: для каждого класса объектов можно определить алгоритм сегментации, позволяющий получить результат, удовлетворяющий исследователей гистологических препаратов.
Вторая глава посвящена сегментации гистологических объектов на полутоновых изображениях.
Глава начинается с классификации гистологических объектов для определения наиболее эффективного метода сегментации. В ходе классификации определяются три основных класса объектов: площадные (клетки, ядра клеток, сосуды и волокна в поперечном срезе), протяженные объекты (сосуды и волокна в продольном срезе), мелкие контрастные объекты (ядрышки, клеточные включения, артефакты) (табл. 1).
Таблица 1
Таблица классификации гистологических объектов и методов их сегментации для каждого класса
Вид объекта |
Характеристика изображения |
Равномерный фон |
Неравномерный фон |
Площадные |
Отдельно лежащие объекты одного типа |
Пороговая сегментация |
Методы математической морфологии |
Объекты |
Объекты, сопровождаемые объектами другого типа |
Пороговая сегментация |
Методы объединения областей |
Протяженные объекты |
Произвольное изображение |
Пороговая сегментация |
Морфологическая сегментация, основанная на утоньшении |
Мелкие контрастные объекты |
Произвольное изображение |
Пороговая сегментация |
Пороговая сегментация |