Алгебра и Начало анализа
Рефераты >> Математика >> Алгебра и Начало анализа

№ 12

Решение тригонометрических уравнений вида sin(x) = a

  1. формула для корней уравнения sin(x) = a, где , имеет вид: Частные случаи:
  2. sin(x) = 0, x =
  3. sin(x) = 1, x =
  4. sin(x) = -1, x =
  5. формула для корней уравнения sin2(x) = a, где , имеет вид: x=

Решение тригонометрических неравенств вида sin(x) > a, sin(x) < a

  1. Неравенства, содержащие переменную только под знаком тригонометрической функции, называются тригонометрическими.
  2. При решении тригонометрических неравенств используют свойство монотонности триго-нометрических функций, а также промежутки их знакопостоянства.
  3. Для решения простейших тригонометрических неравенств вида sin(x) > a (sin(x) < а) используют единичную окружность или график функции y = sin(x). sin(x) = 0 если х = ; sin(x) = -1, если x = >; sin(x) > 0, если ; sin(x) < 0, если .

Ответ № 13

Решение тригонометрического уравнения cos(x) = a

  1. Формула для корней уравнения cos(x) = a, где , имеет вид: .
  2. Частные случаи: cos(x) = 1, x = ; cos(x) = 0, ; cos(x) = -1, x =
  3. Формула для корней уравнения cos2(x) = a, где , имеет вид: .

Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a

  1. Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x);
  2. Важным моментом является знание, что: cos(x) = 0, если ; cos(x) = -1, если x = ; cos(x) = 1, если x = ; cos(x) > 0, если ; cos(x) > 0, если .

№ 14

Решение тригонометрического уравнения tg(x) = a

  1. Формула для корней уравнения tg(x) = a имеет вид: .
  2. Частные случаи: tg(x) = 0, x = ; tg(x) = 1, ; tg(x) = -1, .
  3. Формула для корней уравнения tg2(x) = a, где , имеет вид:

Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a

  1. Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x).
  2. Важно знать, что: tg(x) > 0, если ; tg(x) < 0, если ; Тангенс не существует, если .

№ 15

  1. Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов , , , , выражаются через значения sin , cos , tg и ctg .
  2. Все формулы приведения можно свести в следующую таблицу:

Функция

Аргумент

sin

cos

cos

sin

-sin

-cos

-cos

-sin

sin

cos

sin

-sin

-cos

-cos

-sin

sin

cos

cos

tg

ctg

-ctg

-tg

tg

ctg

-ctg

-tg

tg

ctg

tg

-tg

-ctg

ctg

tg

-tg

-ctg

ctg


Страница: