Наследственность, представления о генетическом коде, гены индивидуальности
После разгадки индивидуальности человека, встал вопрос: обладают ли такой же индивидуальностью другие организмы? Существуют ли у них сверхизменчивые последовательности ДНК? Ученые должны были найти универсальный маркер, одинаково пригодный как для бактерий, так и для человека. Им оказался бактериофаг (вирус бактерий). Это открытие было чрезвычайно важно для работы генетиков и селекционеров.
Выяснилось, что с помощью отпечатков ДНК можно провести идентификацию личности гораздо более успешную , чем это позволяли сделать ттрадиционные методы отпечатков пальцев и анализ крови. Вероятность ошибки - одна на несколько миллионов.Новым открытием срразу же воспользовались криминалисты, которые быстро и эффективно применили его на практике.
С помощью ДНК-отпечатков можно расследовать преступления не только настоящего времени, но и глубокого прошлого.
“ Генетические экспертизы по установлению отцовства-наиболее частый повод обращения судебныхорганов к генетической дактилоскопии. В судебные учреждения обращаются мужчины, сомневающиеся в своем отцовстве, и женщины, желающие получить развод на основании
того, что их муж не отец ребенка. Идентификацию материнства можно проводить по отпечаткам ДНК матери и ребенка в отсутствии отца, и наоборот. для установления отцовства достаточно ДНК-отпечатков отца и ребенка. При наличии же материала матери , отца и ребенка ДНК-отпечатки выглядят не сложнее, чем картинка из школьного учебника: каждая полоса на ДНК-отпечатке ребенка может быть “адресована” либо отцу, либо матери.”[7]
Наиболее интересны прикладные аспекты генетической дактилоскопии.Встает вопрс паспортизации по отпечаткам ДНК прееступников-рецидивистов,введения в картотеки следственных органов данных об отпечатках ДНК нааряду с описанием внешности. особых примет , отпечатков пальцев.
Заключение
Все что мы знаем сегодня о механизмах наследственности, действующих на всех уровнях организации живого (особь, клетка, субклеточная структура, молекула ), удалось установить благодаря теоретическому и техническому вкладу многих дисциплин - биохимии, кристаллографии, физиологии, бактериологии, вирусологиию, цитологии . и, наконец, генетики. В этой кооперации генетика выступала в качестве ведущего начала исследований, унифицировавшего получаемые результаты. Генетическое истолкование биологических явлений имеет в сущности объединяющее значение, как это хорошо выражено в ставшем уже классическим аффоризме Ж. Моно: “Все, что верно для бактерии, верно и для слона”. На современном этапе биологических знаний вполне обоснованно считать, что все свойства организмов , включая человека, могут быть всецело объяснены (если уже не объяснены) особенностямии их генов и тех белков , которые ими кодируются. Поэтому к какой бы отрасли биологии ни относилось изучаемое явление- будь то эмбриология, физиология, паталогия или иммунология. теперь уже невозможно не учитывать его генетические основы. За каждым явлением скрывается его строгая детерминация- группа работающих генов и белков, осуществляющих свои функции.
Эти факты и представляют собой в совокупности солидный вклад генетики в понимание первичных механизмов жизни. Но значение генетики этим не исчерпываеттся. оно связано также с внутренними особенностями генетического метода.
Генетик имеет дело с мутациями , которые служат для него рабочим материалом. Действительно, мутация. выражающаяся в наследственном изменении какого-то свойства, обнаруживает известную долю генетиического материала организма, о существовании и функции которой иначе было бы трудно догадаться. Генетический анализ (состоящий в прослежиивании передачи какого-либо признака при половом размножении) позволяет установить число генов, ответственных за изучаемый признак. и их локализацию. Если признак представляет собой факт эмпирический, сложный (поскольку он соответствует внешним выражениям сложного взаимодействия элементарных явлений) и к тому же изменяющийся в зависимости от условий Среды и
многочисленных микрофакторов, ускользающих от контроля экспериментатора. то ген, напротив,- факт точный , конкретный и стабильный. Совершенно очевидно. что стремление разложить данное явление на его генетические компоненты всегда способствует становлению метода ясного логичного анализа.
Кроме того, использование данных генетики-единственный метод, позволяющий биологу вести строго научное экспериментальное исследование и с уверенностью сопоставлять полученные результаты. Таким образом, генетика дает нам одновременно теоретически рациональный подход, вносящий ясность в понимание исследуемых явлений, и точный экспериментальный метод. Они, безусловно, сохранят свое значение до тех пор. пока не будут удовлетворительно объяснены все свойства живых организмов.
Терминологический словарь
Аллельные гены-гены, располоденные в одних и тех же точках гомологичных хромосом .Аллель можнт быть доминантным и рецесивным.
Гаплоидность-состояние клетки с половинным хромосомным набором (имеется лишь по одной из двух гомологичных хромосом). Гаплоидным набором хромосом обладают женские и мужские половые клетки.
Генетическая рекомбинация- обмен участками генетического материала между гомологичными хромосомами или хроматидами в процессе деления клеток.
Геном- совокупность генов, заключенная в гаплоидном наборе хромосом.
Генотип- совокупность генов в генетическом наборе у данного вида.
Гетерозиготность- состояние гибридного генетического набора, при котором гомологичные хромосомы содержат различные аллели.
Гетерохроматин- спирализованные , интенсивно окрашивающиеся участки хромосом, обладающие своеобразной генетической функцией.
Гиперплоидность- наличие большего , чем обычно, количества генетического материала.
Гипоплоидность- наличие в клетках меньшего, нежели в норме, количества генетического материала.
Гомозиготность- состояние генетического набора, при котором парные гены на гомологичных хромосомах одинаковы.
Гомологичные хромосомы- хромосомы, сходные по строению и несущие одинаковый набор аллельных генов.
Диплоидность- наличие четного числа хромосом в клетках, при котором каждой хромосоме соответствует ее гомолог.
Дифференцировка клеток- процесс специализации функций и биохимических свойств клеток в организме.
ДНК- дезоксирибонуклеиновая киислота- химическое соединение , кодирующее генетическую информацию и хранящее ее в хромосомах эукариотических клеток.
Доминантность-преимущественное появление в фенотипе одного из двух парных генетических признаков в противоположность рецессивному признаку.
Конъюгация хромосм- временное соединение гомологичных хромосом.
Мейоз- особый вид деления клеток. Его биологический смысл состоит в генетической рекомбинации и появлении гаплоидных половых клеток.
Мембрана- в биологии обозначение для белково-липидных клеточных оболочек и внутриклеточных перегородок.