Наследственность, представления о генетическом коде, гены индивидуальности
строгом соответствии с передачей потомству X-хромосом. Самка дрозофилы, проявляюща
рецесивный признак , например белую окраску глаз, в силу гомозиготности по этому гену, находящимуся в X-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою X-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передает его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою X( =Z ) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения X-хромосом концами; тогда самки передают сцепленные X-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим ). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии - от отца к сыну (такое наследование называется голандрическим). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений наследственности, то есть изменчивости.
Нехромосомная теория наследственности. Первенствующая роль ядра и хромосом в наследственности не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению.Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери ). Таким образом , различают ядерную наследственность, связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью ), и внеядерную наследственность, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении , но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями.
Молекулярная генетика. Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному развитию молекулярной генетики. Впервые Н. К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения “наследственных молекул”.В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислотиы ( ДНК ) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация,заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов информация о составе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при половом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток — гамет, единственная функция к-рых — передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи . Генетическая информация заключена преимущественно в хромосомах, где она зашифрована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (генетический код). Генетический код - это система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)—встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой к-те), разлчающихся по входящему в их состав азотистому основанию . В ДНК встречаются основания:
аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присутствует урацил (У). Кроме них, в составе нуклеиновых к-т обнаружено ок. 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных Сахаров. Так как количество кодирующих знаков Генетического кода (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточно для зашифровки всех аминокислот. Американский учёный Г. Гамов предложил (1954) модель т р и п л е т н о г о генетического кода, т. е. такого, в котором 1 аминокислоту кодирует группа из трёх нуклеотидов, называемых кодоном. Число возможных триплетов равно 43 = 64, а это более чем втрое превышает число распространённых аминокислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует несколько кодонов (так называемая вырожденность кода). Было предложено много различных моделей генетического кода, из которых серьёзного внимания заслуживали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены след. осн. закономерности, касающиеся генетического кода: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (коллинеарность генетического кода); 2) считывание кода начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) генетический код, как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность генетического кода уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём;
|
8) код в живой природе универсален (за нек-рыми исключениями). Универсальность генетического кода подтверждается экспериментами по синтезу белка in vitго. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из другого организма, далеко отстоящего от первого в эволюционном отношении (например, проростков гороха), то в такой системе будет идти белковый синтез. Благодаря работам амер. генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах