Газовая резка нержавеющей стали
Рефераты >> Металлургия >> Газовая резка нержавеющей стали

Для воздушно-дуговой резки используют резаки специальной конструкции. На рис. 1, а показан резак РВД-1-58 конструкции ВНИИАвтогенмаш для поверхностной и разделительной воздушно-дуговой резки. Резак имеет рукоятку 5 с вентилем 4 для подачи сжа­того воздуха. Между неподвижной 3 и подвижной 2 губка­ми зажимается угольный электрод 1. В губке 3 имеются два

отверстия, чеи ез которые выходит сжатый воздух, подводи­мый в резак по шлангу через ниппель 6 под давлением 4— 5 кгс/см2; струя воздуха выдувает расплавленный металл из места разреза. Положение резака при разделительной по­верхностной резке показано на рис. 1, б, в, г.

Подпись: Рис. 1. Резак РВД-1-58 для воз¬душно-дуговой рез¬ки:
а - внешний вид, б – резка металла толщиной до 20 мм, в – то, же более 20 мм, г – поверхностная выплавка широких канавок

Расстояние от губок до нижнего конца (вылет) электрода не должно превышать 100 мм. Электрод по мере его обгорания выдви­гают из губок вниз. Ширина канавки при резке превышает диаметр электрода на 1—3 мм. Поверхность металла в ме­сте разреза получается ровной и гладкой. При резке при­меняют постоянный ток обратной полярности (плюс на элек­троде). В качестве электродов применяют угольные элект­роды, выпускаемые в соответствии с ГОСТ 10 720—64. Для повышения стойкости угольные электроды покрывают слоем меди толщиной 0,06—0,07 мм (электроды марки ВД).

Для воздушно-дуговой резки может применяться также переменный ток, однако он дает меньшую производительность резки, чем постоянный. Поэтому применение перемен­ного тока, по данным исследований И. С. Шапиро, наиболее целесообразно при выплавке мелких канавок (например, удалении местных дефектов сварных швов); в этих случаях переменный ток повышает эффективность использования стержня электрода по сравнению с постоянным током об­ратной полярности.

Воздушно-дуговую резку широко используют для поверх­ностной резки большинства черных и цветных металлов, вырезки дефектных участков сварных швов, срезки заклепок, пробивки отверстий, отрезки прибылей стального литья, вы­плавки литейных пороков и пр. Этим способом можно резать различные металлы (нержавеющие стали, чугун, латунь и трудноокнелясмые сплавы) толщиной до 20—25 мм. Режи­мы резки приведены в табл. 2. Режимы поверхностной воз­душно-дуговой резки приведены в табл. 3.

Таблица 2

Режимы воздушно – дуговой разделительной резки на постоянном

токе обратной полярности

Диаметр угольного электрода, мм

Ток, а

Давление воздуха, кгс/см2

Ширина реза, мм

Толщина металла, мм

Затраты на 1 м реза

Время, ч

Воздуха, см3

Электродов, г

4

200-240

5

6

5

0,5

150

16

8

370-390

5,5

10

25

0,07

490

162

12

500-580

6

14

-

-

-

-

Таблица 3

Режимы поверхности воздушно-дугового реза на постоянном токе

Диаметр электрода, мм

Ток, а

Размер канавки, мм

Скорость реза, мм/мин

Глубина

Ширина

Низкоуглеродистой стали

Нержавеющей Х18Н9

6

240-290

8-14

8-9

300-500

390-640

8

350-420

12-16

10-11

10

410-500

9-8

12-13

Качество реза и канавок при воздушно-дуговой резке и строжке удовлетворительное. Однако боковые поверхности реза оказы­ваются неровными, покрыты пленкой оплавленного металла и их необходимо подвергать механической обработке. Это особенно важно для ответственных изделий, так как при воздушно-дуговой резке угольным электродом поверхность металла науглерожи­вается и это может привести к понижению стойкости шва против межкристаллитной коррозии.

Плазменно-дуговая резка (этот способ называют также резкой проникающей дугой, что от­ражает характер дугового разряда, используемого для резки). При плазменно-дуговой * резке (рис. 2) дуга 3 возбуждается между разрезае­мым металлом 4 и неплавящимся вольфрамовым электродом ВЛ-15 (с добавлением лантана), расположенным внутри электрически изолированного формирующего наконечни­ка 1. В большинстве случаев применяется дуга постоянного тока прямой полярности. Продуваемый через сопло газ об­жимает дугу, обеспечивает в ней интенсивное плазмообразование и придает дуге проникающие свойства. При этом газ разогревается до высоких температур (10 000— 20000°С), что обеспечивает высокую скорость истечения и сильное механическое действие плазмы на расплавляе­мый металл, выдуваемый из места реза. В металле 4 образуется полость, по стенкам которой опускается активное пятно 5 дуги. При движении резака в направлении стрелки 2 пятно 5 остается на лобовой стенке реза и вместе со столбом плазменной дуги 3 и факе­лом 6 плазмы обеспечивает непрерывное проплавление металла по всей толщине и одновременное удаление расплавленного и испаренного металла. На рисунке 3 показана схема комплекта для ручной плазменно-дуговой резки, а на рис. 4 —резак РДМ-1-60.


Страница: