Интраскопия (Томография)
Рефераты >> Медицина >> Интраскопия (Томография)

Указанного недостатка лишена аксиальная компьютерная рентгеновская томография. Это объясняется тем, что строго коллимированный пучок рентгеновского излучения проходит только через ту плоскость, которая интересует врача. При этом регистрация рассеянного излучения сведена к минимуму, что значительно улучшает визуализацию тканей, особенно мало контрастных. Снижение регистрации рассеянного излучения при компьютерной томографии осуществляется коллиматорами, один из которых расположен на выходе рентгеновского пучка из трубки, другой - перед сборкой детекторов.

Известно, что при одинаковой энергии рентгеновского излучения материал с большей относительной молекулярной массой будет поглощать рентгеновское излучение в большей степени, чем вещество с меньшей относительной молекулярной массой. Подобное ослабление рентгеновского пучка может быть легко зафиксировано. Однако на практике мы имеем дело с совершенно неоднородным объектом - телом человека. Поэтому часто случается, что детекторы фиксируют несколько рентгеновских пучков одинаковой интенсивности в то время, как они прошли через совершенно различные среды. Это наблюдается, например, при прохождении через однородный объект достаточной протяженности и неоднородный объект с такой же суммарной плотностью.

При продольной томографии разницу между плотностью отдельных участков определить невозможно, поскольку "тени" участков накладываются друг на друга. С помощью компьютерной томографии решена и эта задача, так как при вращении рентгеновской трубки вокруг тела пациента детекторы регистрируют 1,5 - 6 млн сигналов из различных точек (проекций) и, что особенно важно, каждая точка многократно проецируется на различные окружающие точки.

При регистрации ослабленного рентгеновского излучения на каждом детекторе возбуждается ток, соответствующий величине излучения, попа-дающего на детектор. В системе сбора данных ток от каждого детектора (500-2400 шт.) преобразуется в цифровой сигнал и после усиления подается в ЭВМ для обработки и хранения. Только после этого начинается собственно процесс восстановления изображения.

Восстановление изображения среза по сумме собранных проекций является чрезвычайно сложным процессом, и конечный результат представляет собой некую матрицу с относительными числами, соответствующую уровню поглощения каждой точки в отдельности.

В компьютерных томографах применяются матрицы первичного изобра-жения 256х256, 320х320, 512х512 и 1024х1024 элементов. Качество изображения растет при увеличении числа детекторов, увеличении количества регистрируемых проекций за один оборот трубки и при увеличении первичной матрицы. Увеличение количества регистрируемых проекций ведет к по-вышению лучевой нагрузки, применение большей первичной матрицы - к увеличению времени обработки среза или необходимости устанавливать до-полнительные специальные процессоры видеоизображения. [№ 2, стр. 10-13]

ПОЛУЧЕНИЕ КОМПЬЮТЕРНОЙ ТОМОГРАММЫ

Получение компьютерной томограммы (среза) головы на выбранном уровне основывается на выполнении следующих операций: 1) формирование требуемой ширины рентгеновского луча (коллимирование); 2) сканирование головы пучком рентгеновского излучения, осуществляемого движением (вращательным и поступательным) вокруг неподвижной головы пациента устройства "излучатель - детекторы"; 3) измерение излучения и определение его ослабления с последующим преобразованием результатов в цифровую форму; 4) машинный (компьютерный) синтез томограммы по совокупности данных измерения, относящихся к выбранному слою; 5) построение изображения исследуемого слоя на экране видеомонитора (дисплея).

В системах компьютерных томографов сканирование и получение изоб- ражения происходят следующим образом. Рентгеновская трубка в режиме излучения "обходит" голову по дуге 240о, останавливаясь через каждые 3о этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы - кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое.Последнее попадает на фотоэлектронные умножители,превращающие эту видимую часть в электрические сигналы.Электрические сигналы подвергаются усилению,а затем преобразованию в цифры,которые вводят в ЭВМ.Рентгеновский луч,пройдя через среду поглощения, ослабляется пропорционально плотности тканей,встречающихся на его пути,и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала,поступающего с контрольного детектора,регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

Следовательно, формирование показателей поглощения (ослабления) для каждой точки исследуемого слоя происходит после вычисления отношения величины сигнала на выходе рентгеновского излучателя к значению его после прохождения объекта исследования (коэффициенты поглощения).

В ЭВМ выполняется математическая реконструкция коэффициентов пог-лощения и пространственное их распределение на квадратной многоклеточной матрице, а полученные изображения передаются для визуальной оценки на экран дисплея.

За одно сканирование получают два соприкасающихся между собой среза толщиной 10 мм каждый. Картина среза восстанавливается на матрице размером 160х160.

Полученные коэффициенты поглощения выражают в относительных еди-ницах шкалы, нижняя граница которой (-1000 ед.Н.) (ед.Н. - единицы Хаунсфильда или числа компьютерной томографии) соответствует ослаблению рентгеновских лучей в воздухе, верхняя (+1000 ед.Н.) - ослаблению в костях, а за ноль принимается коэффициент поглощения воды. Различные ткани мозга и жидкие среды имеют разные по величине коэффициенты поглощения. Например коэффициент поглощения жира находится в пределах от -100 до 0 ед.Н., спинно-мозговой жидкости - от 2 до 16 ед.Н., крови - от 28 до 62 ед.Н. Это обеспечивает возможность получать на компьютерных томограммах основные структуры мозга и многие патологические процессы в них. Чувствительность системы в улавливании перепада рентгеновской плотности в обычном режиме исследования не превышает 5 ед.Н., что составляет 0,5%.

На экране дисплея высоким значениям плотности (например, кости) соответствует светлые участки, низким - темные. Градационная способность экрана составляет 15-16 полутоновых ступеней, различаемые человеческим глазом. На каждую ступень, таким образом, приходится около 130 ед.Н.

Для полной реализации высокой разрешающей способности томографа по плотности в аппарате предусмотрены средства управления так называемой ширины окна и его уровня (положения), чтобы дать рентгенологу возможность анализировать изображение на различных участках шкалы коэффициентов поглощения. Ширина окна - это величина разности наибольшего и наименьшего коэффициентов поглощения, соответствующая указанному перепаду яркости. Положение или уровень окна (центр окна) - это величина коэффициентов ослабления, равная середине окна и выбираемая из условий наилучшего выявления плотностей интересующей группы структур или тканей. Важнейшей характеристикой является качество получаемого изображения.


Страница: