Электрические сигналы у высших растений
Рефераты >> Биология >> Электрические сигналы у высших растений

МЕХАНИЗМЫ ГЕНЕРАЦИИ И РАСПРОСТРАНЕНИЯ ПД У РАСТЕНИЙ

Когда стало ясно, что ПД у высших растений - это весьма универсальное и широко распространённое явление, возник вопрос о том, что же они собой представляют. Конечно, они очень напоминают ПД нервов. Но, может, это сходство чисто внешнее? Ведь очень уж отличаются по образу жизни животные и растения. В нашей лаборатории мы специально исследовали этот вопрос. Поскольку генерация ПД у животных связанно с передвижением через возбудимую мембрану ионов натрия и калия, то поведение ионов при генерации ПД у растений нас очень интересовало. Применяя различные методы исследования, в том числе и метод меченых атомов, мы показали, что, когда в растении генерируется ПД, так же как и в нерве, возникают ионные потоки (рис.3а). Вначале под воздействием внешних раздражителей увеличивается проводимость мембраны для ионов кальция в результате открывания кальциевых каналов. Ионы кальция входят внутрь проводящих ПД клеток, поскольку их больше во внешней среде. Войдя внутрь возбудимых клеток, они активируют хлорные каналы, которые открываются. Это приводит к возникновению направленного наружу потока ионов хлора, так как их концентрация выше внутри клеток. Поток отрицательно заряженных ионов хлора наружу приводит к деполяризации мембраны, поскольку её внешняя сторона заряжена положительно, а внутренняя - отрицательно. Возникает восходящая ветвь ПД. Деполяризация мембраны способствует открыванию калиевых каналов и возникновению направленного наружу потока ионов калия, которых, так же как и ионов хлора, больше внутри клетки, чем в наружной среде. Не трудно понять, что этот поток будет оказывать на мембранный потенциал реполяризующее действие, то есть приводить к восстановлению его исходного значения.

Нарисованная картина очень напоминает то, что происходит при генерации ПД в нерве, только вместо ионов натрия в качестве деполяризующего иона у высших растений выступают ионы хлора. Это представляется чрезвычайно важным заключением, поскольку свидетельствует об общности механизмов генерации ПД в живой природе.Что касается механизма распространения ПД у растений, то он так же подобен таковому у животных. Деполяризация участка ткани в месте генерации ПД приводит к возникновению круговых местных токов, протекающих между деполяризованным возбуждённым участком ткани и соседними участками, где мембранный потенциал клеток сохраняет нормальный уровень. Эти токи деполяризуют соседние с возбуждённым участком области, что приводит к возникновению в них ПД и таким образом к его распространению от исходного места. Ярким подтверждением такого механизма являются опыты с изменением электропроводности окружающей среды. Если вокруг участка проводящего пучка растения поместить раствор вазелинового масла (непроводящая среда, препятствующая возникновению круговых токов), то, дойдя до этого места, ПД дальше не распространяется.

РОЛЬ ПД У ВЫСШИХ РАСТЕНИЙ

Мы подошли к одному из самых важных вопро­сов проблемы потенциалов действия у растений. Для чего нужна генерация ПД растениям? Может быть, она представляет собой свойство, которое когда-то было позаимствовано ими от предков, но в дальнейшем получило развитие только у одной весьма специфической группы насекомоядных рас­тений, а у остальных растений никакой функцио­нальной нагрузки не выполняет? Очевидно, что от­вет на этот вопрос имеет большое принципиальное значение не только для понимания жизнедеятель­ности растений, но и в общебиологическом аспекте.

Полученные в настоящее время результаты по­зволяют утверждать, что у высших растений распро­страняющиеся ПД выполняют вполне определен­ную функциональную роль. Они служат наиболее быстрым сигналом об изменениях в среде их обита­ния. Однако при этом надо иметь в виду что у расте­ний нет центральной нервной системы - этой «дис­петчерской», откуда управляющие сигналы после поступления туда информации о внешнем раздра­жителе направляются к различным органам. У рас­тений ПД сам несет в себе возможность непосредст­венно влиять на функции органов и тканей, по которым он распространяется. Это связано прежде всего с тем, что при прохождении ПД по данному участку ткани или в месте, до которого он дошел, сильно меняется ионный состав, в особенности со­держание ионов калия и хлора, которые, как мы ви­дели, выходят из возбудимых клеток при генерации импульса. В результате их концентрации в окружа­ющих проводящий пучок тканях могут увеличить­ся. Меняется соотношение и других ионов, хотя и в меньшей степени. В то же время известно, что уро­вень обменных процессов в ткани сильно зависит от ионного состава. Поэтому ПД в состоянии оказы­вать влияние на органы или ткани, по которым они распространяются или которых они достигают. При этом следует иметь в виду, что возникновение ПД в ответ на действие внешнего раздражителя неспеци-

фично, то есть самые разные воздействия вызыва­ют, как правило, однотипную электрическую реак­цию. Кроме того, у растений обычно в ответ на действие раздражителя генерируются одиночные импульсы (в отличие от животных, у которых воз­никают ритмически повторяющиеся ПД). Исходя из этого можно заключить, что у высших растений распространяющиеся ПД не имеют специфической информационной нагрузки, а являются скорее сиг­налом о каком-то внешнем воздействии. Сам по себе ПД как сигнал неспецифичен, но в тканях и органах наряду с общими неспецифическими явлениями он вызывает изменение некоторых специфических процессов, свойственных данному органу (напри­мер, в листьях изменение фотосинтеза, в корнях усиление поглощения веществ и т.д.).

Сигнальная роль ПД проявляется прежде всего в ряде естественных процессов. Например, при попа­дании пыльцы на рыльце пестика в нем возникают многочисленные электрические импульсы, распро­страняющиеся по направлению к завязи. Это запус­кает цикл процессов, подготавливающих завязь к восприятию пыльцы и оплодотворению. ПД возни­кают и в усиках вьющихся растений при соприкос­новении с механической опорой и, по-видимому, способствуют их лучшей ориентации в пространст­ве. При умеренных изменениях в состоянии окру­жающей среды также могут возникать ПД, причем они иногда генерируются в ответ на очень слабые воздействия (например, перепад температур всего 1 - 2°С). Генерация ПД растением в этом случае, ка­залось бы, лишена какого-либо смысла. Зачем при­менять экстренный тип сигнализации с помощью электрических сигналов на довольно слабые и не оказывающие существенного влияния внешние воздействия? Однако оказалось, что это не так. Для растения и в этом случае генерация электрических импульсов имеет определенный смысл, состоящий, как нам удалось показать, в своеобразном «преду­преждении» его органов и тканей о вполне вероят­ных весьма существенных изменениях во внешних условиях. Например, незначительный перепад тем­ператур в сторону охлаждения сам по себе может быть и незначим для растения, однако он может свидетельствовать о возможном предстоящем замет­ном понижении температуры окружающей среды.


Страница: