Основные концепции современной биологии
Сформулированное 2-ое правило термодинамики полностью справедливо и для живой материи, которая в основе подчиняется законам физики и самопроизвольно стремится к распаду, к равновесному состоянию с минимальной свободной энергией и максимальной энтропией. На рис. 4 эти процессы показаны в левой части схемы и означают смерть живой материи, ее превращение в неживую.
Рис. 4. Термодинамические процессы в живой материи.
Однако живая материя, пока она действительно живая, остается неравновесной, структурированной, высоко упорядоченной. В ней имеется свободная, готовая совершить работу энергия, а энтропия минимальна. Такое состояние поддерживается за счет притока внешней энергии и ее трансформации в энергию химических связей макромолекул. Концентрация вещества и поля, то есть повышение внутренней свободной энергии материи происходит в процессе разнообразных биосинтезов (образования сложных веществ из простых), сопряженных с поглощением внешней энергии. Это и есть жизнь - противоположность смерти (правая часть схемы на рис. 4). Поскольку основной формой внешней энергии для поддержания жизни является солнечный свет, формулу жизни можно конкретизировать:
Таким образом, взаимодействие потоков простого вещества и энергии в ходе биосинтеза живого вещества и обратный процесс распада, то есть обмен веществ и энергии, составляет фундаментальное свойство жизни, основную форму движения живой материи. Этому определению вторят разнообразные характеристики жизни, как-то:
Жизнь - это специфическая форма движения материи (кругооборот материи, обмен веществ и энергии) с поддержанием упорядоченного неравновесного состояния (с высокой свободной энергией и низкой энтропией) за счет поглощения и трансформации внешней энергии.
Жизнь - это поддержание высокой упорядоченности (низкой энтропии) в среде с меньшей упорядоченностью (высокой энтропией).
Жизнь препятствует росту энтропии.
Жизнь - это синтез вещества и поля.
Далее мы подробнее остановимся на вопросах биосинтеза веществ и использования энергии, но не вдаваясь в глубокие детали во избежание потери главной мысли - о материальной сущности жизни.
СЕГМЕНТ 13. ТРАНСФОРМАЦИЯ И ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
Итак, материальная сущность жизни проявляется, прежде всего, в непрерывном обмене веществ и энергии, который происходит между живой системой (клеткой, организмом, биоценозом) и окружающей его внешней средой. В этом смысле биологические системы являются открытыми.
Разные организмы потребляют разные виды энергии, в связи с чем их делят на аутотрофные и гетеротрофные. Аутотрофные организмы (дословно - самопитающиеся) способны поглощать энергию неживой природы. Прежде всего это зеленые растения, а также бурые, красные и сине-зеленые водоросли, использующие солнечный свет для процесса фотосинтеза - образования органического вещества глюкозы из неорганических воды и углекислого газа. К аутотрофам относятся также некоторые бактерии, способные к реакциям хемосинтеза - синтеза органических веществ за счет энергии простых химических реакций. При этом первичная энергия (солнечная или химическая) преобразуется в энергию химических связей сложных органических молекул, так что аутотрофы как бы сами создают себе пищу. Гетеротрофные организмы (питающиеся за счет других) - человек, все животные, грибы, а также многие бактерии - получают пищу в виде готовых органических веществ, произведенных аутотрофами, в основном растениями. В составе этой пищи они получают и энергию, заключенную в химических связях. Если органическое вещество пищи расщепить на более простые вещества, освобождается энергия. По сути гетеротрофы получают ту же солнечную энергию, но преобразованную зелеными растениями в химическую. Отсюда ясна огромная роль растительных организмов как посредника в энергетическом обеспечении животных и человека. Избавиться от этой зависимости, получать какую-либо энергию прямо из неживой природы человечество еще не научилось. И хотя академик В. И. Вернадский выдвигал такую научную задачу, дальше фантастических произведений дело не продвинулось и вряд ли продвинется в обозримом будущем. Поэтому для биологов всего мира одной из приоритетных задач остается понять во всех деталях механизм фотосинтеза, с тем чтобы максимально интенсифицировать его в растениях и по возможности воспроизвести в искусственных условиях.
Рис. 5
Рассмотрим несколько подробнее реакции энергетического обмена. Независимо от исходного источника энергии все организмы - как аутотрофы, так и гетеротрофы - сначала переводят энергию в удобное для дальнейшего использования состояние. Это - так называемые макроэргические (богатые энергией) связи в молекулах аденозинтрифосфорной кислоты - АТФ (рис. 5). Образуются молекулы АТФ из аденозиндифосфорной (АДФ) или аденозинмонофосфорной (АМФ) кислоты и свободных молекул фосфорной кислоты, но при непременном поглощении внешней энергии - солнечной или химической (эндотермическая реакция). Количество энергии, запасенное в макроэргической связи, на порядок больше, чем в обычных связях, например, внутри молекулы глюкозы, поэтому в составе АТФ энергию удобно хранить и транспортировать в пределах клетки. В местах потребления этой энергии АТФ распадается на АДФ и фосфат (при крайней необходимости даже на АМФ и два фосфата), а освобожденная энергия расходуется на ту или иную работу - синтез глюкозы в хлоропластах растительных клеток, синтез белков и других макромолекул, транспорт веществ в клетку и из клетки, движение и др. (см. рис. 5 и 6). АДФ (АМФ) и фосфат могут снова соединиться, захватив очередную порцию внешней энергии, а потом разрушиться и отдать энергию в работу. Циклические преобразования АТФ многократно повторяются. Таким образом, АТФ выступает в качестве универсального переносчика энергии внутри клетки, своеобразной разменной монетой в энергетических платежах за внутриклеточные процессы.
Рис. 6
После того, как нам стала ясна роль АТФ и ее цикл, вся проблема клеточной энергетики сводится к пониманию первичных источников энергии и механизмов ее перевода в АТФ. В общем виде ситуация такова: у фотосинтетических аутотрофных организмов синтез АТФ из АДФ и фосфата генерируется солнечной энергией, у гетеротрофов - энергией от окисления пищевых продуктов (см. рис. 5). Таким образом, растениям для синтеза АТФ нужен свет, животным и человеку нужна органическая пища.
Свет является первичным источником энергии, он используется в реакциях фотосинтеза у растений. По конечной сути реакция фотосинтеза довольно проста:
6СО2 + 6H2O + энергия света = С6Н12О6 + 6О2 (рис. 6): с помощью энергии света из углекислого газа и воды синтезируется 6-углеродное органическое вещество - глюкоза (моносахарид), и в качестве «лишнего» продукта образуется кислород, который уходит в атмосферу. На самом деле реакция более сложная, она состоит из двух стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего белка хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе.