Общая геронтология
Гено-регуляторная гипотеза.
Согласно этой концепции первичные изменения происходят в регуляторных генах — наиболее активных и наименее защищенных структурах ДНК. Предполагается, что эти гены могут определять темп и последовательность включения и выключения тех генов (структурных), от которых зависят возрастные изменения в структуре и функции клеток. Прямых доказательств возрастных изменений ДНК немного. В последнее время высказывалось предположение о связи старения с участками ДНК, некоторые из которых сокращаются в размерах при старении. Сообщалось и об открытии особого хромосомного фермента, препятствующего старению ДНК и способного омолаживать клетки человека (В. Райт и сотрудники).
Нейро-эндокрцнные и иммунные гипотезы.
Нейроэндокринная система человека является основным регулятором его жизненных функций. Поэтому с самого начала в геронтологии активно разрабатывались гипотезы, связывающие ведущие механизмы старения на уровне организма с первичными сдвигами в нейро-эндокринной системе, которые могут привести к вторичным изменениям в тканях. При этом, более ранним представлениям о первичном значении изменений деятельности той или иной конкретной железы (гипофиза, щитовидной или, особенно, половых желез и т. д.) приходят на смену взгляды, согласно которым при старении изменяется функция не одной какой-либо железы, а вся нейро-эндокринная ситуация организма.
Довольно широкую известность получили гипотезы, связывающие старение с первичными изменениями в гипоталамусе. Гипоталамус — отдел промежуточного мозга, генератор биологических ритмов организма, играющий ведущую роль в регуляции деятельности желез внутренней секреции, которая осуществляется через центральную эндокринную железу — гипофиз.
Согласно гипотезе «гипоталамических часов» (Дильман, 1968, 1976), старость рассматривается как нарушение внутренней среды организма, связанное с нарастанием активности гипоталамуса. В итоге в пожилом возрасте резко увеличивается секреция гипоталамических гормонов (либеринов) и ряда гормонов гипофиза (гонадотропинов, соматотропина), а также инсулина. Но наряду со стимуляцией одних структур гипоталамуса, другие при старении снижают свою активность, что приводит к «разрегулированию» многих сторон обмена и функции организма.
Молекулярно-генетические гипотезы.
Наибольшее внимание обычно привлекают молекулярно-генетические гипотезы, объясняющие процесс старения первичными изменениями генетического аппарата клетки. Большую их часть можно подразделить на два основных варианта. В первом случае, возрастные изменения генетического аппарата клеток рассматриваются как наследственно запрограммированные, во втором — как случайные. Таким образом, старение может являться запрограммированным закономерным процессом, логическим следствием роста и созревания, либо результатом накопления случайных ошибок в системе хранения и передачи генетической информации.
Если придерживаться первого мнения, то старение, по сути, становится, продолжением развития, в течение которого, в определенной, закрепленной в эволюции последовательности включаются и выключаются различные участки генома. Тогда при «растягивании» программы развития замедляется работа «биологических часов», задающих темп программе старения. Например, в опытах с ограничением питания в молодом возрасте (животные с «продленной жизнью») происходит замедление роста, а следовательно, и старения, хотя механизм далеко не так прост. Предполагается, что замедление роста и отодвигание полового созревания и достижения окончательных размеров тела приводит к увеличению продолжительности жизни. То есть, старение, как и другие этапы онтогенеза, контролируется генами.
Старение по ошибке
Была впервые предложена Л. Оргелем (1963). Она основывается на предположении, что основной причиной старения является накопление с возрастом генетических повреждений в результате мутаций, которые могут быть как случайными (спонтанными), так и вызванными различными повреждающими факторами (ионизирующая радиация, стрессы, ультрафиолетовые лучи, вирусы, накопление в организме побочных продуктов химических реакций и другие). Гены, таким образом, могут просто терять способность правильно регулировать те или иные активности в связи с накоплением повреждений ДНК.
В то же время существует специальная система репарации, обеспечивающая относительную прочность структуры ДНК и надежность в системе передачи наследственной информации. В опытах на нескольких видах животных показана связь между активностью систем репарации ДНК и продолжительностью жизни. Предполагается ее возрастное ослабление при старении. Роль репарации отчетливо выступает во многих случаях преждевременного старения и резкого укорочения длительности жизни. Это относится, прежде всего, к наследственным болезням репарации (прогерии, синдром Тернера, некоторые формы болезни Дауна и другие). В то же время имеются новые данные о многочисленных репарациях ДНК, которые используются как аргумент против гипотез ошибок. В статье под названием «Наука отрицает старость» французский исследователь Р. Россьон (1995) полагает, что в свете этих фактов теория накопления ошибок в нуклеотидных последовательностях. требует пересмотра. Все же репарация, видимо, не приводит к 100% исправлению повреждений.
Многие геронтологи считают, что старение—результат накопления таких неисправленных ошибок. По словам Хейфлика, «потеря точной или надежной (контролирующей) информации происходит из-за накопления случайных воздействий, повреждающих жизненно важные молекулы ДНК, РНК и белков. Когда достигается пороговая величина такого рода „поражений", „повреждений", „погрешностей" или „ошибок", нормальные биологические процессы прекращаются и возрастные изменения становятся очевидными. Истинная природа ущерба, наносимого жизненно важным молекулам, пока неизвестна, но известен сам факт его проявления».
Некоторые геронтологи, и среди них Ф. Маррот Сайнекс из Медицинской школы Бостонского университета, полагают, что ключевым моментом в старении являются ошибки в ДНК. Необратимые изменения в химической структуре длинных, образующих ДНК цепочек атомов получили название мутаций. По Сайнексу, мутации—это изменения в информации, зашифрованной в структуре ДНК, которая контролирует функционирование клетки. Мутации могут возникать в результате неисправленных ошибок при образовании повой ДНК, в результате ошибок в процессе восстановления или из-за повреждения ДНК загрязняющими химическими веществами. Мутации в ДНК клетки могут привести к тому, что клетка начнет синтезировать измененную РНК, а это в свою очередь приведет к синтезу измененных белков - ферментов. Видоизмененный фермент может работать хуже нормального, а то и вовсе не работать. В итоге реакции обмена веществ, в которых участвует такой дефектный фермент, могут прекратиться, и клетка перестает выполнять свои функции или даже погибнет.