Мутации и мутагенез
Мутацияминазывают стойкие изменения в структуре ДНК и кариотипе. Термин впервые предложен ботаником Гуго де Фризом для обозначения внезапно возникающих наследуемых изменений у растений.
Мутации у животных происходят постоянно с определенной частотой и скоростью. Процесс образования их получил название мутагенеза.
Числовые мутации кариотипа. Эта группа мутаций связана с изменением числа хромосом в кариотипе. Количественные изменения в хромосомном составе клеток называют геномными мутациями. Они подразделяются на гетероплоидию, анеуплоидию, полиплоидию.
Гетероплоидия обозначает общее изменение числа хромосом по отношению к диплоидному полному набору.
Об анеуплоидии говорят в тех случаях, когда число хромосом в клетке увеличено на одну (трисомия) или более (полисомия) или уменьшено на одну (моносомия). Употребляют также термины «гиперплоидия» и «гипоплоидия». Первый из них означает увеличенное число хромосом в клетке, а второй – уменьшенное.
Полиплоидией называют увеличение числа полных хромосомных наборов в четное или нечетное число раз. Полиплоидные клетки могут быть триплоидными, тетраплоидными, пентаплоидными, гексаплоидными и т.д.
Дифференциальная активность генов на разных этапах онтогенеза.
Дифференцировка клеток – процесс, при котором во время дробления оплодотворенного яйца клетки постепенно начинают отличаться одна от другой, что приводит в конечном итоге к формированию зародыша со многими специализированными тканями. Клетки разных тканей одного и того же организма отличаются друг от друга формой, размером и строением. В то же время клетки одинаковых тканей даже у животных разных видов имеют сходство. Это связано с тем, что каждый из типов клеток специализирован для выполнения только им свойственных функций.
Пример: нервные клетки приобретают способность передать нервные импульсы, железистые клетки – способность к секреции соответствующих веществ.
Выяснение механизмов дифференцировки клеток – одна из главных задач современной биологии. Поскольку дифференцировка необратима, некоторые ученые в конце прошлого века считали, что в ее основе лежит неравное распределение генов в те или иные дифференцирующие клетки в ходе последовательных клеточных делений. Это предположение было опровергнуто. В начале нашего века было показано, что каждая соматическая клетка имеет такой же набор хромосом, как и исходная оплодотворенная яйцеклетка. Доказательством являются специальные опыты по пересадке ядер. Дж. Гердон (1962) разрушал ядра яйцеклеток лягушки ультрафиолетовыми лучами и инъецировал в энуклеированные яйцеклетки ядра дифференцированных клеток кишечного эпителия плавающего головастика. Небольшой процент таких ядер обеспечивал развитие головастиков и нормальных лягушек. Опытами было показано, что ядра кишечных клеток содержат все гены, необходимые для дифференцировки всех типов клеток.
В последующей работе по пересадке ядер Дж. Гердон показал, что в течение первых десяти клеточных делений при развитии эмбриона лягушки в ядрах не наблюдается синтеза РНК. Клетки этот период быстро делятся, реплицируют ДНК. Однако в клетках идет синтез белка. У животных в период роста и созревания яйцеклетки в цитоплазме накапливается большое количество молекул РНК, которые, соединившись с белками-гистонами, образуют гранулы – информосомы.
Информосомы до оплодотворения яйцеклетки находятся в неактивном состоянии. Сразу же после оплодотворения мРНК освобождается от белков-гистонов, поступает в рибосомы цитоплазмы яйцеклетки и начинается синтез определенных белков по программе материнской ДНК. Поэтому начальный период развития зиготы осуществляется под контролем генов материнского организма. С начала стадии гаструляции и в дальнейшем синтез белка осуществляется под влиянием мРНК, образующейся в ядрах клеток эмбриона, т.е. под контролем генов обеих родительских особей. На первых этапах исследований основными экспериментальными объектами были иглокожие (морские ежи) и земноводные (лягушки, саламандры), потому что у них легко получать и оплодотворять яйцеклетки и следить за ходом эмбрионального развития. Лишь в последние годы разработаны приемы, при помощи которых появилась возможность изучать ранние стадии эмбриогенеза у мышей.
Одним из примеров дифференциальной активности генов в период органогенеза может служить процесс формирования пуфов в гигантских хромосомах дрозофилы. Гигантские хромосомы слюнных желез являются политенными и включают до 1000 нитей. Они имеют по длине определенный рисунок. На хромосомах видны диски, которые представляют собой соединение гомологичных генов. Было установлено, что на определенных стадиях отдельные диски деспирализуются и принимают форму вздутий, получивших название пуффов. При помощи использования радиоактивного уридина было установлено, что в пуффах происходит интенсивный синтез молекул иРНК. Разные стадии развития личинок сопровождаются активностью определенных пуффов. Это говорит о том, что на разных стадиях развития вступают в действие разные гены.
О неодновременной активности различных генов может свидетельствовать изменение состава белков организма в связи с возрастом. На стадиях раннего эмбрионального развития у человека идет образование гемоглобина F, который состоит из двух цепей полипептидов – альфа и гамма. Приблизительно с 13 недель эмбрионального развития начинается синтез гемоглобина А, характерного для взрослого человека. У гемоглобина А цепь полипептида гамма заменена на цепь бета несколько иного строения. Цепь альфа у обоих гемоглобинов одинакова, и ее синтез контролируется одним и тем же геном. У новорожденного гемоглобин F составляет 70 – 80% общего количества. И только к году происходит полная замена гемоглобина F гемоглобином А. По данным В.В. Пилько, Е.К. Меркурьевой и С. Мигле, полная замена гемоглобина F гемоглобином А у телят происходит к 110-120 дневному возрасту.
Обнаружены существенные возрастные изменения в количестве и составе белков сыворотки крови у телят в эмбриональный период. По данным В.М. Холода, первый период эмбрионального развития характеризуется низким содержанием сывороточных белков (2,62 г%), затем количество их постепенно с возрастом плода увеличивается и к 9 месяцам достигает 4,44 г%. Отношение альбуминов к глобулинам возрастает с 0,40 у 2-х месячного плода до 1,21 к моменту рождения. В постэмбриональный период также наблюдаются изменения белкового спектра сыворотки крови. По данным А.С. Гурьяновой, у телок бурой латвийской породы содержание общего белка сыворотки крови с 3-18-ти месячного возраста увеличилось с 6,12 до 7,54 %, в том числе глобулинов с 3,03 до 4,24%.
Некоторые органы и ткани специализируются на синтезе каких-то определенных белков, и количество РНК в них в отдельные периоды возрастает или снижается. И.Я. Шихов изучал содержание ДНК и РНК в вымени телок, нетелей и коров. Он обнаружил, что отношение количества РНК к количеству ДНК составляет в среднем у половозрелых телок 0,48, у нетелей и коров в конце стельности 1,0, у коров в начале лактации 2,34 (с большими колебаниями), в конце лактации 1,72. Наблюдалась высокая степень связи (r = 0,71) между содержанием РНК в вымени и удоем коров. Это показывает, что образование РНК усиливается, когда в вымени коров синтезируется много белка при высоких удоях, и снижается при уменьшении удоев.