Лекции по биофизике
Рефераты >> Биология >> Лекции по биофизике

Пригожин сформулировал:

В стационарных состояниях при фиксированных внешних параметрах локальная продукция энтропии в открытой т/д системе стремится к минимальному значению.

Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления к системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Механизмы саморегуляции систем

Функционируют по принципу обратной связи. Обратная связь – это понятие, обозначающее влияние выходного сигнала системы на ее рабочие параметры.

Рисунок. Различают положительную и отрицательную обратную связь. "–" чаще встречается в био системах, направлена на снижение влияния выходного сигнала на рабочие параметры системы. "+" усиливает влияние выходного сигнала на рабочие параметры системы в результате чего система может выходить из данного состояния.

Гомеостаз – постоянство многих параметров.

"–" мотонейрон, рисунок

"+" секреция желудочного сока. В желудке имеется желудочный сок, который вырабатывается до принятия пищи. Под действием желудочного сока начинается расщепление белков. В начальном отделе кишечника питательные вещества всасываются в кровь. Гормоны (гастрин, гистамин) всасываются в кровь, попадают в сосуды, кровоснабжающие желудок и активизируют его работу.

Механизм кругового возбуждения в нейронах ЦНС

Рисунок. "+" обратная связь имеет место в патогенезе заболевания. "Порочный круг" при инфаркте недостаток кислорода – нарушается питание сердца – гипоксия – нектоз тканей – изменение функций сердца – застой венозной крови – сердечная мышца страдает от недостатка кровоснабжения

Рисунок. В реальных био системах + и – обратная связь часто накладываются друг на друга, существуют параллельно. + обратная связь стремится вывести систему из стационарного состояния, при этом она будет переходить в новое стационарное состояние более выгодное при данных условиях. При этом оба стационарных состояния находятся в пределах физиологической нормы отклонений.

Типы переходных процессов

Рисунок

Кинетика биопроцессов

Динамические свойства биопроцессов

Каждая система состоящая из элементов будет характеризоваться динамикой, складывающейся из элементов. Кинетика биопроцессов – раздел биофизики, изучающий динамические свойства биопроцессов.

1. Параметры, меняющие свое значение со временем. Переменные величины: численность клеток, биомасса, концентрация отдельных веществ, трансмембранный потенциал. Изначально предполагается, что из изменение в каждый данный момент времени могут быть описаны соответствующими диф уравнениями.

2. Величины, значение которых с течением времени практически не изменяется. Это рН, t0, электропроводность ткани и т.д.

Пример: характеризует кинетику процесса в культуре клеток

Условия: имеется замкнутая популяция клеток, в которой происходят процессы их размножения и гибели. Питательные вещества присутствуют в избытке.

Вопрос: Как меняется численность клеток со временем? Может ли в ней установиться стационарное состояние, когда число клеток со временем меняться не будет?

Решается с помощью диф уравнения.

Количество клеток = N

dN/dt – ? зависит от V размножения и V гибели клеток.

dN/dt =Vразмножения – Vгибели = k1N – k2N = kN

k – коэффициент пропорциональности, определяется условиями. k1, k2: t0, кол-во пищи, концентрация солей, радиация). k = k1 – k2

dN = kN*dt

N = N0*ekt

N – количество клеток в любой момент времени,

N0 – количество клеток в начальный момент наблюдения t = 0,

е – основание натурального логарифма,

k – коэффициент пропорциональности,

t – время наблюдения за системой.

1. Если k > 0

t → ∞, N(t) → ∞ растущая

2. Если k < 0 (k2 < k1)

t → ∞, N(t) → 0 вымирающая

3. Если k = 0 (k2 = k1)

t → ∞, N = N0 cтационарная

Как изменится количество клеток в системе, если ограничить количество питательных веществ?

В этом случае изменение количества клеток в популяции со временем будет описываться логистическим уравненем Ферхюста:

dN/dt = kN*(Nmax–N/Nmax)

Nmax – максимально возможная численность популяции в данных условиях.

Рисунок. Логистическая кривая.

Начальная часть N << Nmax экспененциальный рост,

Вторая часть – изгиб в другую сторону N → Nmax количество питательных веществ ограничивает дальнейший рост количества клеток в популяции.

Основные особенности кинетики биопроцессов

1. В биокинетике в качестве переменных величин выступают не только концентрации веществ, но и другие параметры.

2. Биосистема пространственно гетерогенна, следовательно условия действия реагентов могут различаться в разных точках системы и переменные изменяются не только во времени, но и в пространстве.

3. Существуют специфические механизмы саморегуляции действия по принципу обратной связи.

4. Трудности биокинетики связаны так же с тем, что она описывает процессы открытых систем.

Схема системы с отрицательной обратной связью

ОУ – объект управления,

РВ – регулируемая величина,

ИУ – измерительное устройство (измерение параметров регулируемой величины)

АС – аппарат сравнения,

ОС – обратная связь,

f – сигнал от высших центров регуляции.

Простейшая кинетическая модель открытой системы

. Модель системы в которой происходит обмен веществ "а" и "b" с окружающей средой, внутри обратимые реакции превращения "а" в "b", во внешних резервуарах концентрация этих веществ постоянна и равна соответственно А и В.

da/dt = k1(A–a)–k2(a–k–2b)

db/dt = k2a–k3(b–B)–K–2b

Для стационарного состояния будет соблюдаться условие: da/dt = 0, db/dt = 0.

"а" стационарное и "b" стационарное не зависят от начальных условий, то есть от значений "а" и "b" в момент t = 0. "а" стационарное и "b" стационарное определяются только величинами констант k с 1 по 3 и концентраций веществ во внешних резервуарах системы, то есть А и В.

Вывод:

В каком бы начальном состоянии ни находилась система, в ней в конце концов установится один и тот же стационарный режим при котором а = а стационарное, b = b стационарное. Это свойство эквивалентности стационарных состояний. Оно присуще открытым системам и постоянно встречается при изучении свойств биополимеров.

Качественный анализ кинетической модели

Основная идея метода заключается в отказе от нахождения точных аналитических решений диф уравнений. Вместо этого используются качественные характеристики динамического поведения системы: устойчивость или неустойчивость стационарного состояния, переходы между стационарными состояниями, наличие колебательных движений в системе, качественная зависимость поведения системы от критических значений параметров. Наиболее важным свойством стационарного состояния является его устойчивость, она определяется спосбностью системы самопроизвольно в него возвращаться после внесения внешних возмущений, отклоняющих систему от исходно стационарной точки.


Страница: