Расширение вселенной и красное смещение
Рефераты >> Астрономия >> Расширение вселенной и красное смещение

Открытие расширяющейся Вселенной было одним из великих интеллектуальных переворотов двадцатого века. Задним числом мы можем лишь удивляться тому, что эта идея не пришла никому в голову раньше. Ньютон и другие ученые должны были бы со­образить, что статическая Вселенная вскоре обязательно начала бы сжиматься под действием гравитации. Но предположим, что Вселенная, наоборот, расширяется. Если бы расширение происхо­дило достаточно медленно, то под действием гравитационной си­лы оно в конце концов прекратилось бы и перешло в сжатие. Од­нако если бы скорость расширения превышала некоторое кри­тическое значение, то гравитационного взаимодействия не хватило бы, чтобы остановить расширение, и оно продолжалось бы веч­но. Все это немного напоминает ситуацию, возникающую, когда с поверхности Земли запускают вверх ракету. Если скорость ра­кеты не очень велика, то из-за гравитации она в конце концов остановится и начнет падать обратно. Если же скорость ракеты больше некоторой критической (около одиннадцати километров в секунду), то гравитационная сила не сможет ее вернуть и ракета будет вечно продолжать свое движение от Земли. Расширение Вселенной могло быть предсказано на основе ньютоновской теории тяготения в XIX, XVIII и даже в конце XVII века. Однако вера в статическую Вселенную была столь велика, что жила в умах еще в начале нашего века. Даже Эйнштейн, разрабатывая в 1915 г. об­щую теорию относительности, был уверен в статичности Вселен­ной. Чтобы не вступать в противоречие со статичностью, Эйн­штейн модифицировал свою теорию, введя в уравнения так назы­ваемую космологическую постоянную. Он ввел новую «антиграви­тационную» силу, которая в отличие от других сил не порожда­лась каким-либо источником, а была заложена в саму струк­туру пространства-времени. Эйнштейн утверждал, что простран­ство-время само по себе всегда расширяется и этим расширени­ем точно уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается ста­тической. По-видимому, лишь один человек полностью поверил в общую теорию относительности: пока Эйнштейн и другие фи­зики думали над тем, как обойти нестатичность Вселенной, пред­сказываемую этой теорией, русский физик и математик А. А. Фридман, наоборот, занялся ее объяснением.

Фридман сделал два очень простых исходных предположе­ния: во-первых, Вселенная выглядит одинаково, в каком бы направ­лении мы ее ни наблюдали, и, во-вторых, это утверждение должно оставаться справедливым и в том случае, если бы мы произво­дили наблюдения из какого-нибудь другого места. Не прибегая ни к каким другим предположениям, Фридман показал, что Вселенная не должна быть статической. В 1922 г., за несколько лет до откры­тия Хаббла, Фридман в точности предсказал его результат!

Предположение об одинаковости Вселенной во всех направле­ниях на самом деле, конечно, не выполняется. Как мы, напри­мер, уже знаем, другие звезды в нашей Галактике образуют четко выделяющуюся светлую полосу, которая идет по всему небу ночью — Млечный Путь. Но если говорить о далеких галакти­ках, то их число во всех направлениях примерно одинаково. Следовательно, Вселенная действительно «примерно» одинакова во всех направлениях — при наблюдении в масштабе, большом по сравне­нию с расстоянием между галактиками, когда отбрасываются мелкомасштабные различия.

Долгое время это было единственным обоснованием гипотезы Фридмана как «грубого» приближения к реальной Вселенной. Но потом по некой случайности выяснилось, что гипотеза Фридмана и в самом деле дает удивительно точное описание нашей Все­ленной.

В 1965 г. два американских физика, Арно Пензиас и Роберт Вильсон, работавших на фирме Bell Laboratories в шт. Нью-Джерси, испытывали очень чувствительный «микроволновый», т. е. сверхвысокочастотный (С В Ч), детектор. (Микроволны — это то же, что и световые волны, но их частота всего лишь десять тысяч миллионов волн в секунду.) Пензиас и Вильсон заметили, что уровень шума, регистрируемого их детектором, выше, чем должно быть. Этот шум не был направленным, приходящим с какой-то определенной стороны. Сначала названные исследователи обнару­жили в детекторе птичий помет и пытались объяснить эффект другими причинами подобного рода, но потом все такие «факто­ры» были исключены. Они знали, что любой шум, приходящий из атмосферы, всегда сильнее не тогда, когда детектор направ­лен прямо вверх, а когда он наклонен, потому что лучи света, иду­щие из-за горизонта, проходят через значительно более толстые слои атмосферы, чем лучи, попадающие в детектор прямо сверху. «Лишний» же шум одинаков, куда бы ни направлять детектор. Следовательно, источник шума должен находиться за пределами атмосферы. Шум был одинаковым и днем, и ночью, и вообще в течение года, несмотря на то, что Земля вращается вокруг своей оси и продолжает свое вращение вокруг Солнца. Это означало, что источник излучения находится за пределами Солнечной си­стемы и даже за пределами нашей Галактики, ибо в противном случае интенсивность излучения изменялась бы, поскольку в свя­зи с движением Земли детектор меняет свою ориентацию. Как мы знаем, по пути к нам излучение проходит почти через всю наблюдаемую Вселенную. Коль скоро же оно одинаково во всех направлениях, то, значит, и сама Вселенная одинакова во всех направлениях, по крайней мере в крупном масштабе. Теперь нам известно, что, в каком бы направлении мы ни производили наблюдения, этот шум изменяется не больше, чем на одну деся­титысячную. Так Пензиас и Вильсон, ничего не подозревая, дали удивительно точное подтверждение первого предположения Фрид­мана.

Приблизительно в это же время два американских физика из расположенного по соседству Принстонского университета, Боб Дикке и Джим Пиблс, тоже занимались исследованием микроволн. Они проверяли предположение Джорджа Гамова (бывшего ученика А. А. Фридмана) о том, что ранняя Вселенная была очень горячей, плотной и раскаленной добела. Дикке и Пиблс выска­зали ту мысль, что мы можем видеть свечение ранней Вселенной, ибо свет, испущенный очень далекими ее областями, мог бы дойти до нас только сейчас. Но из-за расширения Вселенной красное смещение светового спектра должно быть так велико, что дошед­ший до нас свет будет уже микроволновым (СВЧ) излучением. Дикке и Пиблс готовились к поиску такого излучения, когда Пен­зиас и Вильсон, узнав о работе Дикке и Пиблса, сообразили, что они его уже нашли. Зa этот эксперимент Пензиас и Вильсон были удостоены Нобелевской премии 1978 г. (что было не совсем спра­ведливо, если вспомнить о Дикке и Пиблсе, не говоря уже о Гамове!).

Правда, на первый взгляд, тот факт, что Вселенная кажется нам одинаковой во всех направлениях, может говорить о какой-то выделенности нашего местоположения во Вселенной. В частно­сти, раз мы видим, что все остальные галактики удаляются от нас, значит, мы находимся в центре Вселенной. Но есть и дру­гое объяснение: Вселенная будет выглядеть одинаково во всех на­правлениях и в том случае, если смотреть на нее из какой-нибудь другой галактики. Это вторая гипотеза Фридмана. Нет научных доводов ни за, ни против этого предположения, и его приняли, так сказать, из скромности: было бы крайне странно, если бы Вселенная казалась одинаковой во всех направ­лениях только вокруг нас, а в других ее точках этого не было! В модели Фридмана все галактики удаляются друг от друга. Это вроде бы как надутый шарик, на который нанесены точки, если его все больше надувать. Расстояние между любыми двумя точ­ками увеличивается, но ни одну из них нельзя назвать центром расширения. Притом, чем больше расстояние между точками, тем быстрее они удаляются друг от друга. Но и в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Таким обра­зом, модель Фридмана предсказывает, что красное смещение галактики должно быть прямо пропорционально ее удаленности от нас, в точном соответствии с открытием Хаббла. Несмотря на успех этой модели и на согласие ее предсказаний с наблю­дениями Хаббла, работа Фридмана оставалась неизвестной на за­паде, и лишь в 1935 г. американский физик Говард Робертсон и английский математик Артур Уолкер предложили сходные модели в связи с открытием Хаббла.


Страница: