ПульсарРефераты >> Астрономия >> Пульсар
ронными звездами: Оппенгеймер сыграл ведущую роль в создании
американской атомной бомбы.
Оппенгеймер и Волков доказали, что звездное вещество, в ко-
тором электроны и протоны соединились в нейтроны, может удержи-
ваться в виде шара с собственными гравитационными силами. Зная
свойства нейтронного вещества, можно осуществить теоретические
расчеты нейтронных звезд. Анализ математической модели нейтрон-
ной звезды показывает, что плотность ее должна быть очень вели-
ка: масса, равная солнечной, заключена в объеме шара с попереч-
ником 30 км. - в кубическом сантиметре содержится миллиарды тонн
нейтронной материи ( рис. 7 ). Но нейтронные звезды, если заста-
вить их осциллировать, будут делать это гораздо быстрее, чем
пульсары. Поэтому в качестве объяснения периода пульсаров объем-
ная осцилляция нейтронных звезд не происходит.
Итак, мы вновь вернулись к тому, с чего начали. Мы искали
плотные звездоподобные объекты, которые могли бы совершать дос-
таточно быстрые колебания,- и белые карлики оказались слишком
медленными, а гипотетические нейтронные звезды слишком быстрыми.
Об открытии пульсаров Томас Голд узнал, будучи преподавате-
лем Корнельского университета в городе Итака ( штат Нью-Йорк ).
И вот, в то время как в научных журналах одна за другой публико-
вались скороспелые попытки объяснить существование пульсаров (
сводившиеся, главным образом, к попыткам спасти гипотезу пульси-
рующих звезд ), мысль Томаса Голда пошла в совершенно ином нап-
равлении.
К регулярным периодическим движениям небесных тел относятся
и собственное вращение объекта. Солнце, например, совершает пол-
ный оборот вокруг своей оси за 27 суток; существуют звезды, ко-
торые вращаются гораздо быстрее. Не связано ли строгая периодич-
ность пульсаров с какими-либо вращательным движением ? Тогда
объект должен был бы совершать полный оборот менее чем за секун-
ду - в случае пульсара в Крабовидной туманности тридцать оборо-
тов в секунду ! Звезда, однако не может вращаться сколь угодно
быстро, поскольку при слишком высокой скорости она будет разру-
шена центробежными силами. Предельная скорость вращения звезды
определяется величиной гравитации на поверхности звезды; для бе-
лого карлика этот предел равен примерно одному обороту в секун-
ду. Если бы скорость вращения белого карлика соответствовала пе-
риоду пульсара в Крабовидной туманности, то он не выдержал бы
действия центробежных сил. С большей скоростью могла бы вращаться
лишь более плотная звезда.
Это возвращает нас к нейтронным звездам: вероятно, периоди-
ческие "вспышки" пульсара объясняются вращением нейтронной звез-
ды. Для этого нейтронная звезда должна совершать оборот вокруг
своей оси за доли секунды, и это вполне возможно: сила тяжести
на поверхности нейтронной звезды достаточно велика. Нейтронная
звезда может вращаться гораздо быстрее.
Гипотезу Томаса Голда, согласно которой пульсары являются
вращающимися нейтронными звездами, астрофизики сразу же приняли
как наиболее правдоподобную. Вековое увеличение периода пульсара
объяснялось бы тогда постепенным замедлением вращения нейтронной
звезды. Это вполне естественно: можно предположить, что энергия,
посылаемая пульсаром в виде электромагнитного излучения, черпа-
ется за счет энергии вращения нейтронной звезды. Вращение могло
бы постепенно замедляться только из-за потерь энергии на излуче-
ние, хотя в действительности торможение сильнее.
Ученые пришли к выводу, что энергия, высвобожденная в ре-
зультате замедления вращения пульсара Крабовидной туманности,
расходуется не только на излучение самого пульсара, но и на из-
лучение всей туманности. Этим разрешается еще одно затруднение.
В то время как свечение обычных туманностей - например, пла-
нетарной туманности или туманности Ориона - обусловлена излуче-
нием атомов, свечение Крабовидной туманности имеет совершенно
иное происхождение. Электроны, обладающие в результате взрыва
сверхновой огромной энергией, движутся здесь со скоростью, близ-
кой к скорости света. В магнитном поле туманности электроны дви-
жутся по круговым орбитам, излучая при этом свет. Оставался не
решенным вопрос, почему эти электроны с 1054 года движутся все
также быстро, почему они не замедлились, теряя свою энергию на
излучение. Со временем интенсивность излучения должна ослабе-
вать, и свечение Крабовидной туманности меркнуть. По-видимому,
электроны пополняют свою энергию за счет какого-то внешнего ис-
точника. Теперь этот источник был найден. Если Томас Голд прав,
то в Крабовидной туманности находится вращающаяся нейтронная
звезда, которая, возможно, через свое магнитное поле передает
энергию окружающему газу. Как гигантский пропеллер, вращается
нейтронная звезда в туманности, обеспечивая электронам высокую
скорость, а Крабовидной туманности - большую яркость. Запаса
энергии вращения нейтронной звезды хватит еще на много тысячеле-
тий.
Итак, мы нашли механизм, объясняющий регулярность посылаемых
пульсарами импульсов. Однако нужно еще понять, как именно возни-
кает радиоизлучение. Поскольку речь идет не о непрерывной волне,
а об импульсе, при котором в течение большей части периода энер-
гия равна нулю и лишь кратковременно энергия очень велика, можно
предположить, что звезда посылает излучение в определенном нап-
равлении и мы регистрируем его в тот момент, когда луч вращаю-
щейся звезды-прожектора "чиркает" по Земле - точно так же, как с
корабля видят луч вращающегося фонаря на маяке.
По всей видимости, нейтронная звезда обладает магнитным по-
лем, подобно Земле, но значительно более сильным. Предположим,
что магнитная ось звезды не совпадает, как и у Земли, с ее осью
вращения. При вращении нейтронной звезды магнитное поле так же
вращается, и поучается картина, показанная на рисунке 8 : на по-
верхности вращающейся нейтронной звезды, обладающей магнитным
полем, где нейтроны вновь превращаются в протоны и электроны,
господствуют мощные электрические силы, под действием которых
заряженные частицы уносятся прочь от звезды. Частицы движутся
вдоль магнитных силовых линий в пространстве. Их энергии доста-
точно для того, чтобы Крабовидная туманность и сегодня, через
тысячу лет после своего возникновения, могла светиться. Движение
заряженных частиц поперек магнитных силовых линий затруднено,
поэтому они покидают нейтронную звезды, главным образом в облас-
ти ее магнитных полюсов, уходя вдоль искривленных силовых линий.
Это схематически показано на рисунке 9. Электроны, как самые
легкие частицы покидают звезду с самой большой скоростью, близ-