Анализ электрической цепи синусоидального токаРефераты >> Радиоэлектроника >> Анализ электрической цепи синусоидального тока
В практике применения переменных токов широко пользуются понятием действующего значения электрической величины. Действующим называют среднее квадратичное значение переменной электрической величины за период. Действующий ток обозначают той же буквой, что и соответствующее амплитудное значение, но без индекса m:
I = .
Тепловое и электромеханическое действия тока пропорциональны квадрату его мгновенного значения, поэтому именно действующий ток I может служить количественной мерой их оценки за период.
Между амплитудой и действующим значением для синусоидальных величин установлена связь. Если i = Isin t, то
,
следовательно в соответствии с определением I = I/.
Для действующих значений синусоидально изменяющихся напряжения, э.д.с. и магнитного потока справедливы аналогичные выражения:U = U/, E = E/, Ф = Ф/.
Если говорят о значениях переменного напряжения, э.д.с. или тока, то, как правило, подразумевают их действующие значения.
Диапазон напряжений и токов, используемых в электротехнике очень широк. Обычно приборы для измерения переменных токов и напряжений градуируют в действующих значениях.
Во многих случаях основные характеристики электротехнических устройств могут быть получены и описаны с помощью известных из курса физики интегральных понятий (скалярных величин): тока, электродвижущей силы (э.д.с.), напряжения. При таком описании совокупность электротехнических устройств рассматривают как электрическую цепь, состоящую из источников и приёмников электрической энергии, характеризуемых э.д.с. Е.током I, напряжением U. Источники и приёмники электрической энергии, являющиеся основными элементами электрической цепи, соединяют проводами для обеспечения замкнутого пути для электрического тока. Для включения и отключения электротехнических устройств применяют коммутационную аппаратуру (выключатели, рубильники, тумблеры). Кроме этих элементов в электрическую цепь могут включаться электрические приборы для измерения тока, напряжения, мощности.
Для анализа цепей переменного тока как правило пользуются схемами замещения составленными из идеальных элементов: резистивного R, емкостного C, индуктивного L, источника э.д.с. E, источника тока J.
К идеальным резистивным элементам могут быть отнесены реостаты, большинство электронагревательных устройств; резисторы.
К емкостным отнестяся конденсаторы.
Примером индуктивного идеального элемента электрической цепи является индуктивная катушка.
Идеальным источником может служить энергосистема и промышленная сеть переменного тока.
Применение законов Кирхгофа для описания состояния электрических цепей.
Основными законами, используемыми для анализа и расчёта электрических цепей, являются первый и второй законы Кирхгофа.
Первый закон Кирхгофа является следствием закона сохранения заряда, согласно которому в любом узле заряд одного знака не может ни накапливаться, ни убывать. Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю:
При этом токи, направленные от узла, следует брать со знаком плюс, а токи, направленные к узлу,- со знаком минус.
Второй закон Кирхгофа является следствием закона сохранения энергии, в силу которого изменение потенциала в замкнутом контуре равно нулю. Изменение потенциала между двумя точками участка цепи характеризуется разностью потенциалов, которую можно измерить вольтметром. В электротехнике разность потенциалов между двумя любыми точками цепи принято называть напряжением. Поэтому согласно второму закону Кирхгофа алгебраическая сумма напряжений всех участков замкнутого контура равна нулю:
При составлении уравнений по второму закону Кирхгофа слагаемые берут со знаком плюс в случае, когда направление обхода контура совпадает с направлением соответственно напряжения, тока или э.д.с., в противном случае берут со знаком минус.
Рекомендуется следующий порядок составления уравнений по законам Кирхгофа: определяют число ветвей, узлов и независимых контуров, устанавливают число независимых уравнений по первому закону Кирхгофа, остальные уравнения составляют по второму закону Кирхгофа.
Для определения неизвестных токов в ветвях необходимо составить уравнения по первому второму закону Кирхгофа, количество которых должно быть равно количеству неизвестны4х токов. По первому закону Кирхгофа можно составить y-1 независимых уравнений, где y- количество узлов цепи. Использовать все y уравнений невозможно, так как одно из них обязательно будет зависимым.
Количество уравнений, составляемых по второму закону Кирхгофа, должно быть равно количеству независимых контуров. Независимым называют контур, в который входит хотя бы одна новая ветвь.
Если в результате решения этих уравнений получатся отрицательные значения токов, то это означает, что истинные направления токов в ветвях цепи противоположны тем направлениям, для которых составлялись уравнения.
Метод контурных токов.
Сложную электрическую цепь, содержащую несколько активных и пассивных элементов и имеющую много узлов и контуров, рассчитать с помощью первого и второго законов Кирхгофа будет довольно трудно, так как будет связано с решением большого количества уравнений. Вводя понятие о контурных токах, можно свести уравнения, составленные по законам Кирхгофа, к системе уравнений, составленных лишь для независимых контуров, т. е. исключить уравнения, составляемые по первому закону Кирхгофа. Благодаря этому удаётся снизить порядок системы уравнений. Под контурными токами понимают условные (расчётные) токи, замыкающиеся в соответствующих контурах. На основе составленных уравнений выписывается матрица вида Здесь квадратная матрица коэффициентов при неизвестных контурных токах; матрица- столбец неизвестных контурных токов; матрица- столбец известных контурных э.д.с. Диагональные элементы матрицы , называемые контурными сопротивлениями или собственными сопротивлениями контуров, равны сумме сопротивлений всех элементов, входящих в контур. Остальные элементы матрицы равны сопротивлениям общих ветвей смежных контуров и имеют знак минус. Если какие-либо контуры не имеют общих ветвей, то соответствующие элементы матрицы равны нулю. Решением уравнения будет , где - матрица, обратная матрице коэффициентов .