Прогнозирование развития агропромышленного комплексаРефераты >> Экономическая география >> Прогнозирование развития агропромышленного комплекса
Рис. 3 - Графики экспертных оценок второго тура
Окончательные статистические результаты экспертизы “Дельфи” приведем в таблице 5.
Таблица 5 - Итоги экспертной оценки “Дельфи”
Тур |
Интервал |
Средняя оценка в туре | Дисперсия б2 | v = б/х 100% |
1 | 1950 – 2050 | 2030 | 32873,2 | 8,9 |
2 | 1960 – 2000 | 1982,5 | 2277,6 |
2,4 |
Результатом экспертизы является медиана ранжированного ряда в туре 2: Me=1978 (тыс.т.)
Экспертами были приведены следующие аргументы за минимальный сбор зерна:
· негативная оценка материально-технической базы основных хозяйств;
· прогнозная оценка погодных усовий:
· недостаточное финансирование АПК;
· проблемы в области управления АПК.
Аргументы за максимальный сбор зерна:
· активизация хозяйственной деятельности фермерских хозяйств в связи с проводимой в области аграрной реформой;
· увеличение посевных площадей.
По результатам были сделаны следующие выводы:
1. В результате 2-х туров оценки эксперты пришли к выводу, что валовой сбор зерна в Курской области в 2000 году составит 1978 тыс.т, это на 159 тыс.т больше чем в 1999г. Тенденция роста сбора зерна сохранится .
2. На протяжении двух туров коэффициент вариации составил менее 33%, опрос можно было прекратить после первого тура, но для уточнения результата был проведен второй тур.
3.3.Прогнозирование методом экстраполяции динамических рядов
Определим прогноз валового сбора зерна в 2000г. с помощью экстраполяции динамических рядов и полученный результат сравним с данными экспертов.
Исходной информацией для экстраполяции являются временные ряды.
При экстраполяции преполагается, что:
· текущий период изменения показателей может быть охарактеризован плавной траекторией - трендом;
· основные условия, определяющие технико-экономические показатели в текущем периоде, не претерпят существенных изменений в будущем, то есть в будущем они будут изменяться по тем же законам, что в прошлом и настоящем;
· отклонения фактических значений показателей от линии тренда носят случайный характер и распределяются по нормальному закону.
Прогнозное значение рассчитаем, используя табличный процессор Excel. Исходный динамический ряд представлен в таблице 1. Так как первая половина ряда имеет существенные колебания, вызванные в основном влиянием внешней среды: политические события, социально-экономические факторы, изменения границ области и т.д., то в качестве ретроспективной информации возьмем данные с 1970 года.
Представим информацию графически.
Рис.4 - Прогноз валового сбора зерна экстраполяцией динамического ряда
В качестве прогнозной функции выбираем полином 5-й степени, уравнение которого приведено на рисунке 4. Величина R2 = 0,5389 приемлема. Прогнозное значение валового сбора для 2000 года равно 2500 тыс.тонн, что превышает результаты экспертной оценки.
При принятии управленческого решения должны быть учтены результаты, полученные и наивными, и экспертными методами.
Заключение
В заключении данной работы можно сделать вывод, что задачами экономического прогнозирования является выявление перспектив ближайшего или более отдалённого будущего в исследуемой области на основе реальных процессов действительности, выработка оптимальных управленческих решений и перспективных планов с учетом составленного прогноза и оценки принятого решения с позиций его последствий в прогнозируемом периоде.
Сущность экспертных методов состоит в проведении интуитивно-логического анализа проблемы, выполняемого привлечёнными для этой цели специалистами экспертами, обладающими необходимым профессиональным образованием, опытом и интуицией. Использование экспертного метода целесообразно только в задачах, отвечающим условиям:
1) задача не может быть решена никаким другим существующим способом;
2) другие, кроме экспертного способы или менее точны, или более трудоёмки.
Особенно эффективно использование экспертного метода в задачах характеризующихся неопределённостью ситуации, её вероятным характером. Подобные ситуации характерны для сельского хозяйства.
Следовательно, прогноз сделанный с помощью метода Дельфи является более достоверным, чем наивный прогноз. При принятии управленческого решения необходимо учитывать результаты и наивных и экспертных прогнозов.
Список использованных источников
1. Бешелев С.Д.,Гурвич Ф.Г.Математико-статистические методы экспертных оценок.2-е изд. перераб. и доп. М: Статистика. 1980-263с.
2. Бобровников Г.Н., Клебанов А.И. Прогнозирование в управлении техническим уровнем и качеством прдукции: Учеб. Пособие.-М:Издательство стандартов. 1984-232с.
3. Глущенко В.В., Глущенко И.И. Разработка управленческого решения. Прогнозирование-планирование. Теория проектирования экспериментов.-г.Железнодорожный, Моск.обл.:ТОО НПЦ “Крылья”,1997-400с.
4. Гранберг А.Г. Статистическое моделирование и прогнозирование / Под ред. Гранберга А.Г.- М:Финансы и статистика 1990-383с.
5. Кузьбожев Э.Н. Экономическое прогнозирование (методы и модели): Учеб. пособие.( Курск. гос. техн. ун-т Курска), 1997 –84с.
6. Литвак Б.Г. Экспертные оценки и принятие решений . М: Патент, 1996-217с.
7. Мотышина М.С.Методы социально-экономического прогнозирования: Учебное пособие- СПб: Изд-во СПб УЭФ,1994-114с.
8. Прогнозирование и планирование в условиях рынка : Учеб. пособие для вузов . Под ред. Морозовой Т.Г., Пикулькина А.В.- М: ЮНИТИ-ДАТА,1999-318с.
9. Прогнозирование и планирование экономики:Учеб. пособие/ Борисевич В.И., Кандаурова Г.А. - Мн.:ИП”Экоперспектива”, 2000. - 432с.
10. Теория прогнозирования и принятия решений. Учеб. пособие . Под ред. Саркисяна С.А. М: “Высш. Школа”,1977
11. Хохлов Б.П. О состоянии и основных направлениях развития агропромышленного комплекса области в 2000году/ Курская правда .28 марта 2000 с.2