Выбор метода очистки сточных вод от фенолов
УВМ еще дороги, но простая электрическая регенерация (причем нагревательным элементом может служить сам материал) делает эти адсорбенты более перспективными, чем активированные угли.
Реализация биосорбционного способа очистки промышленных стоков химической промышленности приведены в таблице 6.[46]
Таблица 6.
Эффективность биосорбционного способа очистки промышленных стоков.
Варианты биосорбционной технологии |
Источник образования сточных вод |
Состав сточной воды, мг/л |
Степень очистки, % |
ПАУ, 0,5 кг/м 3 , однократная дозировка |
Нефтепереработка, органический синтез |
ХПК – 440…1400 СПАВ – 5…5,5 Фенол- 2,3…6,7 Взвешенные вещества-19…39 |
66…92 88…99,9 99,9 67…96,7 |
Зола теплоэлетростанций, 0,5 кг/м 3 , однократная дозировка |
Нефтепереработка, органический синтез |
ХПК – 440…1400 СПАВ – 5…5,5 Фенол- 2,3…6,7 Взвешенные вещества-19…39 |
50,5…87,3 80,5…97,5 99,7 29,3…92,6 |
Зола теплоэлетростанций, 0,4 кг/м 3 , однократная дозировка |
Нефтехимия, производство синтетических каучуков |
ХПК – 180…500 Сульфиды-13…60 СПАВ- 0,4…1,5 Взвешенные вещества- 10…20 |
60…96 99,9 16…40 99,7…99,9 |
Сопоставительный анализ регенеративных методов позволяет заключить следующее. Для очистки больших объемов воды эффективнее используется адсорбционный метод.
Введение мочевины в среду в качестве добавки приводит к снижению концентраций фенола в стоках примерно в 10 раз. Мочевина оказывает селективное ускоряющее воздействие на биоочистку, то есть увеличивается скорость биоразложения только фенола, в то время как на другие компоненты сточной воды заметное влияние не замечено.
Очистка путем перевода фенола в легко выделяемые
соединения.
Выделение из сточных вод фенолов связано со значительными материальными затратами. Поэтому часто целесообразнее переводить фенолы в другие соединения (малорастворимые, более летучие и т.д.), выделение которых из сточных вод не представляет трудностей.
При значительном содержании в сточной воде фенола, возможно, выделить в виде фенолформальдегидных смол. Процесс конденсации фенолов или их производных с формальдегидом проводят при избыточном количестве формальдегида в присутствии щелочей или кислот [14]. В результате конденсации образуются резольные смолы. В условиях значительного избытка формальдегида в щелочной среде [29] и при низких температурах (20…60 0С) образуются фенолоспирты, не вступающие в дальнейшую реакцию конденсации. Более высокие температуры (более 70 0С) способствуют взаимодействию фенолоспиртов друг с другом.
С целью сокращения времени, необходимого для конденсации фенола с формальдегидом, предложено проводить конденсацию при высокой температуре (150 …160 0С) и повышенном давлении (0,5 … 0,6 МПа) [21].
Резольная смола – смесь сравнительно низкомолекулярных линейных и разветвленных продуктов. Молекулярная масса их изменяется от 400 до 800 … 1000. Образующаяся резольная смола растворима в воде. Выделенная из воды смола может быть использована в качестве склеивающего материала в производстве фанеры, древесностружечных плит и других изделий [21].
Образование фенилового эфира полиэтилен гликоля при конденсации фенола с окисью этилена. (реакция образования ОП-7, ОП-10)
Данные методы используются эффективнее при удалении фенолов с относительно большой концентрацией фенола, при стабильном содержании нефтепродуктов в сточных водах (их количество должно быть постоянным). Из за невозможности стабилизировать количество фенолов в сточных водах направляемых на очистку, расход вводимых реагентов не будет соответствовать расчетному значению, что приведет к увеличению содержания реагентов в отводимых с установки сточных вод и их перерасход в виде потерь (нарушение норм ПДК). Считаю данные методы не применимы для использования на установке ЭЛОУ-АВТ-4.
Вывод
Сравнение данных методов очистки фенолов показывает, что очистка пероксидом водорода является наиболее эффективной для установки ЭЛОУ-АВТ-4. Преимуществом применения пероксида водорода является его относительно высокая стабильность в отличие от других окислителей, сравнительная простота аппаратурного оформления процесса. Особо следует отметить, что остаточная концентрация пероксида водорода способствует процессу последующей аэробной, биологической очистки, а в природных водах пероксид водорода, в отличие от хлора, играет положительную роль. Основным из них является возможность обработки сточных вод в широком диапазоне значений концентраций, температур и рН. Не менее важна высокая селективность окисления различных примесей сточных вод при подборе условий проведения процесса. Данное обстоятельство обычно позволяет минимизировать затраты на реагенты.
Электрохимическая очистка сточных вод от фенолов экономически более выгодна, чем другие методы обезвреживания [3,4,14]. Затраты на электрохимическую очистку сточных вод от фенолов в 2 раза меньше стоимости озонирования и в 5 раз дешевле адсорбционного метода обладает целым рядом технологических преимуществ.
Электрохимическое окисление фенола при малых концентрациях в воде протекает медленно и требует значительного расхода электроэнергии, однако содержание солей в сточных водах выводимых с установки ЭЛОУ-АВТ-4 в больших количествах позволит снизить затраты электроэнергии
Для удаления фенолов из сточных вод установки ЭЛОУ-АВТ-4 необходимо дополнительно интенсифицировать процесс окисления кислородом воздуха в К-620 (усовершенствовать насадку, или увеличить ее количество, дополнительно установив углеродисто-волокнистый материал, используемый в реакторе К-620). Так же необходимо предусмотреть один из следующих вариантов очистки сточных вод от фенолов: применение пероксида водорода (или рассмотреть возможность использования отходов производства пероксида водорода цех №32.), использование электрохимической очистки или комплексное использование данных методов, причем введение пероксида водорода после электрохимической очистки.
Библиографический список
1. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия. М., ВШ., 1969
2. Предельно допустимые концентрации вредных веществ в воздухе и воде. 2-е изд., -Л.: Химия, 1975.
3. Томилов А.П., Осадченко И.М., Фукс Н.Ш. Химическая Промышленность., 1972, №4, с. 267…271