Гражданские самолеты
Рефераты >> Авиация и космонавтика >> Гражданские самолеты

На воздушном транспорте наибольшую экономическую эффективность имеет самолет,обладающий при постоянной дальности полета и прочих равных условиях максимальной весовой отдачей по коммерческой нагрузке (пассажиры, багаж, груз) Gком/Gо - отношением ее веса к взлетному весу самолета. Увеличение или уменьшение коммерческой нагрузкипри вариации размеров самолетов определяется в основном изменением относительного веса конструкции, влияющего таким образом на экономическую эффективность самолета.

А380

Борьба за снижение веса конструкции - крыла, фюзеляжа, оперения, шасси - началась с момента зарождения авиации. В то же время стали исследоваться закономерности изменения размеров и веса агрегатов самолета. Получил известность закон “квадрата-куба”, отражающий эти закономерности. В соответствии с ним вес конструкции и всего самолета, зависящий от его объема, растет пропорционально кубу увеличения линейных размеров при сохранении геометрического подобия в то время, как подъемная сила, зависящая от площади крыла, растет пропорционально квадрату размеров. Увеличение веса самолета, опережающее рост подъемной силы, неизбежно должно ограничивать предельное возрастание его размеров. Для сохранения летных и взлетно-посадочных характеристик при увеличении размеров самолетов нужно обеспечить постоянство удельной нагрузки на крыло Gо/S (отношение взлетного веса к площади крыла). Но это возможно только при условии, что вес самолета растет пропорционально не кубу, а квадрату линейных размеров. Для веса конструкции - главной составляющей веса самолета - это практически невозможно при принятых условиях: сохранении геометрического подобия, одинаковых уровне техники, материалах. Поэтому относительный вес конструкции Gкон/Gо будет неизбежно расти с увеличением размеров самолета, а доля веса коммерческой нагрузки - снижаться. При этом, как видно из отношения Gо/S, величина удельной нагрузки на крыло будет повышаться пропорционально увеличению размеров. Статистика подтверждает эту тенденцию. Например, Ту-134 имеет Gо/S = 370 кг/м2 , Ту-154 - 470 кг/м2 , Ил-62 - 580 кг/м2, Боинг 747 - 740 кг/м2 . Это, конечно, увеличивает посадочную и взлетную скорости и потребную длину ВПП, но иначе нельзя было бы создать большие самолеты, так как с увеличением удельной нагрузки вес конструкции крыла снижается из-за уменьшения его площади (при постоянном Gо).Поэтому иногда для сравнительно небольших магистральных самолетов при их базировании на длинных ВПП резко повышают удельную нагрузку, снабжая крыло мощной механизацией. Например, современный Ту-334 имеет весьма значительную для своих размеров удельную нагрузку Gо/S =550 кг/м2 . С ростом размеров уменьшаются избытки прочности конструкции, обусловленные различными технологическими факторами и ее местной прочностью, повышается устойчивость сжатых элементов. Конструкция используется полнее, эффективнее. Но это обстоятельство приводит к более интенсивному росту веса конструкции при возрастании размеров, так как напряжения уже предельны и их нельзя повышать за счет снижения избытков прочности.

рис.1

На рис. 1 показано изменение весовой отдачи по коммерческой нагрузке при увеличении размеров магистральных пассажирских самолетов средней дальности обычной аэродинамической схемы с хвостовым оперением. Вначале можно рассчитать вес некоторого условного самолета, который не нес бы никакой полезной нагрузки (Gком = 0). Потом, взяв небольшую коммерческую нагрузку, получим новый, увеличенный вес самолета с относительной коммерческой нагрузкой Gком/Gо > 0. Если продолжить такой расчет, постоянно увеличивая пассажировместимость, то можно увидеть, что весовая отдача (Gком/Gо) быстро возрастает, но достигнув максимума, она уменьшается, так как с увеличением размеров самолета будет повышаться относительный вес конструкции. Указанный максимум соответствует таким размерам самолета, до которых их увеличение сопровождается возрастанием действующих напряжений и снижением избытков прочности, а дальнейшее повышение напряжений уже невозможно и увеличение размеров и нагруженности приводит к интенсивному росту массы конструкции. При числе мест свыше 600 выгодным становится двухпалубный фюзеляж, имеющий по сравнению с однопалубным меньшую длину, большую плотность загрузки, меньший вес конструкции: при числе мест свыше 1600 - трехпалубный. Переход к многопалубным компоновкам - один из способоврационального “нарушения” геометрического подобия при возрастании размеров. Как известно, с увеличением дальности полета усиливается влияние на критерий оценки (например, себестоимость тонно-километра) аэродинамического совершенства самолета по сравнению с влиянием весовых характеристик, и наоборот - на малых дальностях роль весового совершенства возрастает. Поэтому оптимальное значение миделя фюзеляжа при увеличении расчетной дальности уменьшается. Наглядным примером к этому правилу может служить и изменение выгодности одно- и двухпалубных фюзеляжей при вариации пассажировместимости и дальности полета. Однопалубные фюзеляжи обеспечивают большее аэродинамическое качество, но они тяжелее двухпалубных, и это утяжеление возрастает с увеличением размеров. Поэтому однопалубные фюзеляжи предпочтительны для самолетов с меньшей пассажировместимостью и большей дальностью полета, в то время как увеличение пассажировместимости и снижение дальности полета делают более выгодной двухпалубную компоновку. Проведенные расчеты позволили определить наивыгоднейшие конструктивно-компоновочные решения в широком диапазоне значений пассажировместимости и дальности полета. Полученные результаты дают возможность выявить границу выгодности между одно- и двух- палубными фюзеляжами в зависимости от числа пассажирских мест и расчетной дальности полета.

рис.2

На рис. 2, кроме границы, разделяющей зоны рациональности одно- и двухпалубных фюзеляжей, нанесены точки, соответствующие значениям пассажировместимости и дальности современных многоместных самолетов. Выбор для них однопалубных фюзеляжей, как следует из рис. 2, оправдан. Точки, лежащие на границе, соответствуют случаям равной выгодности одно- и двухпалубных фюзеляжей. В зонах, прилегающих к границе, показатели выгодности обеих компоновок весьма близки. Поэтому только значительное удаление от границы в зону выгодности конкретной компоновки делает ее преимущество значительным.

В 2004 г. должен начать полеты первый полностью двухпалубный пассажирский самолет А 380 консорциума “Эрбас Индастри”, вмещающий при трехклассной компоновке (для различных модификаций) от 555 до 650 пассажиров. Приветствуя пионерское конструктивно-компоновочное решение, следует отметить, что его преимущества перед альтернативными однопалубными компоновками не выглядят решающими, так как лежат в районе границы равной выгодности обеих компоновок, особенно учитывая межконтинентальную дальность самолета, составляющую 14000 км. Интересно отметить, что ИКАО пересмотрело в сторону увеличения максимальные размеры аэродромов для обеспечения базирования новых самолетов с максимальным размахом крыла до 80 м, длиной фюзеляжа до 90 м, диаметром фюзеляжа до 8 м, колеей шасси до 16 м, числом стоек главных ног шасси до 4 и количеством колес на каждой стойке до 6.


Страница: