Решение задач транспортного типа методом потенциалов
Рефераты >> Статистика >> Решение задач транспортного типа методом потенциалов

Таблица № 2

ПН

ПО

В1

В2

В3

В4

В5

Запасы

аi

А1

10

18

8

27

5

3

6

9

48

А2

6

7

8

30

6

5

30

А3

8

7

10

9

8

12

7

6

27

А4

7

5

4

6

8

20

20

Заявки

bj

18

27

42

12

26

125

Составленный нами план перевозок, не является оптимальным по стоимости, так как при его построении мы совсем не учитывали стоимость перевозок Сij .

Другой способ - способ минимальной стоимости по строке - основан на том, что мы распределяем продукцию от пункта Ai не в любой из пунктов Bj, а в тот, к которому стоимость перевозки минимальна. Если в этом пункте заявка полностью удовлетворена, то мы убираем его из расчетов и находим минимальную стоимость перевозки из оставшихся пунктов Bj. Во всем остальном этот метод схож с методом северо-западного угла. В результате, опорный план, составленный способом минимальной стоимости по строке выглядит, так как показано в таблице № 3.

При этом методе может получиться, что стоимости перевозок Cij и Cik от пункта Ai к пунктам Bj и Bk равны. В этом случае, с экономической точки зрения, выгоднее распределить продукцию в тот пункт, в котором заявка больше. Так, например, в строке 2: C21 = C24, но заявка b1 больше заявки b4, поэтому 4 единицы продукции мы распределим в клетку (2,1).

Таблица № 3

ПН

ПО

В1

В2

В3

В4

В5

Запасы

аi

А1

10

8

5

42

6

6

9

48

А2

6

4

7

8

6

5

26

30

А3

8

7

27

10

8

7

0

27

А4

7

14

5

4

6

6

8

20

Заявки

bj

18

27

42

12

26

125

Способ минимальной стоимости по столбцу аналогичен предыдущему способу. Их отличие состоит в том, что во втором способе мы распределяем продукцию от пунктов Bi к пунктам Aj по минимальной стоимости Cji.

Опорный план, составленный способами минимальных стоимостей, обычно более близок к оптимальному решению. Так в нашем примере общие затраты на транспортировку по плану, составленному первым способом F0 = 1039, а по второму F0 = 723.

Клетки таблицы, в которых стоят ненулевые перевозки, являются базисными. Их число должно равняться m + n - 1. Необходимо отметить также, что встречаются такие ситуации, когда количество базисных клеток меньше чем m + n - 1. В этом случае распределительная задача называется вырожденной. И следует в одной из свободных клеток поставить количество перевозок равное нулю. Так, например, в таблице № 3:


Страница: