Решение задач транспортного типа методом потенциаловРефераты >> Статистика >> Решение задач транспортного типа методом потенциалов
Таблица № 2
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 | Запасы аi |
А1
| 10 18 | 8 27 | 5 3 | 6 | 9 | 48 |
А2
| 6 | 7 | 8 30 | 6 | 5 | 30 |
А3
| 8 | 7 | 10 9 | 8 12 | 7 6 | 27 |
А4
| 7 | 5 | 4 | 6 | 8 20 | 20 |
Заявки bj | 18 | 27 | 42 | 12 | 26 | 125 |
Составленный нами план перевозок, не является оптимальным по стоимости, так как при его построении мы совсем не учитывали стоимость перевозок Сij .
Другой способ - способ минимальной стоимости по строке - основан на том, что мы распределяем продукцию от пункта Ai не в любой из пунктов Bj, а в тот, к которому стоимость перевозки минимальна. Если в этом пункте заявка полностью удовлетворена, то мы убираем его из расчетов и находим минимальную стоимость перевозки из оставшихся пунктов Bj. Во всем остальном этот метод схож с методом северо-западного угла. В результате, опорный план, составленный способом минимальной стоимости по строке выглядит, так как показано в таблице № 3.
При этом методе может получиться, что стоимости перевозок Cij и Cik от пункта Ai к пунктам Bj и Bk равны. В этом случае, с экономической точки зрения, выгоднее распределить продукцию в тот пункт, в котором заявка больше. Так, например, в строке 2: C21 = C24, но заявка b1 больше заявки b4, поэтому 4 единицы продукции мы распределим в клетку (2,1).
Таблица № 3
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 | Запасы аi |
А1 | 10 | 8 | 5 42 | 6 6 | 9 | 48 |
А2 | 6 4 | 7 | 8
| 6 | 5 26 | 30 |
А3 | 8 | 7 27 | 10
| 8
| 7 0 | 27 |
А4 | 7 14 | 5 | 4 | 6 6 | 8 | 20 |
Заявки bj | 18 | 27 | 42 | 12 | 26 | 125 |
Способ минимальной стоимости по столбцу аналогичен предыдущему способу. Их отличие состоит в том, что во втором способе мы распределяем продукцию от пунктов Bi к пунктам Aj по минимальной стоимости Cji.
Опорный план, составленный способами минимальных стоимостей, обычно более близок к оптимальному решению. Так в нашем примере общие затраты на транспортировку по плану, составленному первым способом F0 = 1039, а по второму F0 = 723.
Клетки таблицы, в которых стоят ненулевые перевозки, являются базисными. Их число должно равняться m + n - 1. Необходимо отметить также, что встречаются такие ситуации, когда количество базисных клеток меньше чем m + n - 1. В этом случае распределительная задача называется вырожденной. И следует в одной из свободных клеток поставить количество перевозок равное нулю. Так, например, в таблице № 3: