Принципы формирования статистических показателей
Рефераты >> Статистика >> Принципы формирования статистических показателей

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты:

Действительно, если мы обратимся к приведенному выше примеру расчета среднего курса продажи акций, то получим следующее равенство (за счет округления среднего курса правая и левая части равенства в данном случае будут несколько отличаться):

417,03 · 1850 = 420 · 700 + 440 · 200 + 410 · 950

2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю:

Для нашего примера:

(420 - 417,03) · 700 + (440 - 417,03) · 200 + (410 - 417,03) · 950 ≈ 0 Математическое доказательство данного свойства сводится к следующему:

3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С:

Следовательно, сумма квадратов отклонений индивидуальных значений признака от произвольной величины С больше суммы квадратов их отклонений от своей средней на величину

На использовании этого свойства базируется расчет центральных моментов, представляющих собой характеристики вариационного ряда при C = [1]:

где k определяет порядок момента (центральный момент второго порядка представляет собой дисперсию).

4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину:

Так, если все курсы продажи акций увеличить на 15 руб., то средний курс также увеличится на 15 руб.:

5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз:

Предположим, курс продажи в каждом случае возрастет в 2 раза. Тогда и средний курс также увеличится на 100%:

6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится:

Так, в нашем примере удобнее было бы рассчитывать среднюю, предварительно поделив все веса на 100:

Исходя из данного свойства, можно заключить, что если все веса равны между собой, то расчеты по средней арифметической взвешенной и средней арифметической невзвешенной приведут к одному и тому же результату.[1, с.168]

Кроме средней арифметической при расчете статистических показателей могут использоваться и другие виды средних. Однако, в каждом конкретном случае, в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.

Средняя гармоническая взвешенная используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель. Рассмотрим расчет средней урожайности, являющейся одним из основных показателей эффективности производства в агробизнесе:

Валовой сбор и урожайность сельскохозяйственной культуры "Y" по районам области

Район

Валовый сбор, тыс. тонн

Урожайность, ц/га

А

36

13

Б

53

9

В

29

15

Г

78

8

Д

20

17

Средняя урожайность любой сельскохозяйственной культуры в среднем по нескольким территориям, агрофирмам, фермерским хозяйствам и т.п. может быть определена только на основе следующего исходного соотношения:

Общий валовой сбор мы получим простым суммированием валового сбора по районам. Данные же о посевной площади отсутствуют, но их можно получить, разделив валовой сбор по каждого района на урожайность. С учетом этого определим искомую среднюю, предварительно переведя для сопоставимости тонны в центнеры:

Таким образом, общая посевная площадь данной культуры в целом по области составляла 215,2 тыс.га, а средняя урожайность - 10,0 ц с одного гектара. [5, с.69]

В данном случае расчет произведен по формуле средней гармонической взвешенной:

Данная формула используется для расчета средних показателей не только в статике, но и в динамике, когда известны индивидуальные значения признака и веса W за ряд временных интервалов.

Средняя гармоническая невзвешенная. Эта форма средней, используемая значительно реже, имеет следующий вид:

[1, с.172]

Для иллюстрации области ее применения воспользуемся упрощенным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 5 мин., второй - 15 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников равна?

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (например, за час) разделить на общее число обработанных за этот интервал двумя работниками заказов:

Если теперь мы заменим индивидуальные значения их средней величиной, то общее количество обработанных за час заказов не изменится:


Страница: