Принципы формирования статистических показателей
Рефераты >> Статистика >> Принципы формирования статистических показателей

Категорию средней можно раскрыть через понятие ее определяющего свойства. Согласно этому понятию средняя, являясь обобщающей характеристикой всей совокупности, должна ориентироваться на определенную величину, связанную со всеми единицами этой совокупности. Эту величину можно представить в виде функции:

f (х1, х2, ., хn).[5, с.60]

Так как данная величина, в большинстве случаев, отражает реальную экономическую категорию, понятие определяющего свойства средней иногда заменяют понятием определяющего показателя.

Если в приведенной выше функции все величины х1, х2, ., хn заменить их средней величиной , то значение этой функции должно остаться прежним:

[1, с.163]

Исходя из данного равенства и определяется средняя. На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

[1, с.163]

Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников:

[2, с.146]

Числитель исходного соотношения средней представляет собой определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Независимо от того, какой первичной информацией мы располагаем - известен ли нам общий фонд заработной платы или заработная плата и численность работников, занятых на отдельных должностях, или какие-либо другие исходные данные - в любом случае среднюю заработную плату можно получить только через данное исходное соотношение средней.

Для каждого показателя, используемого в экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Если, например, требуется рассчитать средний размер вклада в банке, то исходное соотношение будет следующим:

[5, с.62]

Если же необходимо определить среднюю процентную ставку по кредитам, выданным на один и тот же срок, то потребуется следующее исходное соотношение:

[7, с.128]

Однако от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение. В каждом конкретном случае для реализации исходного соотношения потребуется одна из следующих форм средней величины:

· средняя арифметическая;

· средняя гармоническая;

· средняя геометрическая;

· средняя квадратическая, кубическая и т.д.

Перечисленные средние объединяются в общей формуле средней степенной (при различной величине k):

где: хi- i-ый вариант осредняемого признака () fi - вес i-го варианта. [1, с.164]

Помимо степенных средних в экономической практике также используются средние структурные, среди которых наиболее распространены мода и медиана. При осреднении уровней динамических рядов применяются различные виды средней хронологической.

Наиболее распространенным видом средних величин является средняя арифметическая, которая, как и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной. Эта форма средней используется в тех случаях, когда расчет осуществляется по несгруппированным данным.

Предположим, шесть торговых предприятий фирмы имеют следующий объем товарооборота за месяц:

Торговое предприятие

1

2

3

4

5

6

Товарооборот (млн.руб.)

25

18

27

32

15

21

Для того, чтобы определить средний месячный товарооборот в расчете на одно предприятие, необходимо воспользоваться следующим исходным соотношением:

Используя приведенные в предыдущем параграфе условные обозначения, запишем формулу данной средней:

С учетом имеющихся данных получим:

В данном случае мы использовали формулу средней арифметической простой (невзвешенной). [5, с.64]

Средняя арифметическая взвешенная. При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться по несколько раз. В подобных случаях расчет средней производится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.

Рассмотрим следующий условный пример:

Сделки по акциям эмитента "Х" за торговую сессию

Сделка

Количество проданных акций, шт.

Курс продажи, руб.

1 2 3

700 200 950

420 440 410

Определим по данному дискретному вариационному ряду средний курс продажи 1 акции, что можно сделать, только используя следующее исходное соотношение:

Чтобы получить общую сумму сделок необходимо по каждой сделке курс продажи умножить на количество проданных акций и полученные произведения сложить. В конечном итоге мы будем иметь следующий результат:

Расчет среднего курса продажи произведен по формуле средней арифметической взвешенной:

В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (в процентах или долях единицы). Так, в приведенном выше примере количество проданных в ходе каждой сделки акций соответственно составляет 37,8% (0,378); 10,8% (0,108) и 51,4% (0,514) от их общего числа. Тогда, с учетом несложного преобразования формулы получим:

или

= 420 · 0,378 + 440 · 0,108 + 410 · 0,514 = 417,03 руб. [5, с. 66]

Свойства средней арифметической.

Средняя арифметическая обладает некоторыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчете. Рассмотрим эти свойства:


Страница: