Понятие о выборочном наблюдении
Рефераты >> Статистика >> Понятие о выборочном наблюдении

Пусть нас интересует некоторый признак х. Его распределение в генеральной совокупности характеризуется частотами F, из которых вытекают генеральная средняя х, генеральная дисперсия D, генеральное среднее квадратическое отклонение s, генеральные доли (относительные частоты и частости) р. Цель выборочного наблюдения заключается в том, чтобы, отобрав из генеральной совокупности некоторое число n единиц, обследовать их и на этой основе оценить неизвестные нам генеральные характеристики. Совокупность отобранных единиц носит название выборочной совокупности, или просто выборки, и все ее характеристики тоже называются выборочными. Вариация признака х в выборочной совокупности характеризуется частотами f, из которых вытекают выборочная средняя х, выборочная дисперсия Dв, выборочное среднее квадратическое отклонение sв = ÖDв, выборочные доли w = f/åf. На основе теорем закона больших чисел можно утверждать, что при достаточно большом объеме выборки выборочные характеристики мало отличаются от генеральных, т.е. если n достаточно велико, то х » х; w» р; Dв»D.

Ошибка выборки – это абсолютная величина в разности между соответствующими выборочной и генеральной характеристиками:

|х - х| - ошибка для средней или |w - р| - ошибка для доли.

Как и сама выборочная характеристика, ошибка выборки является случайной величиной. Пользуясь теоремой Ляпунова, можно указать вероятность (Р) того, что ошибка выборки не превысит некоторую заданную величину D, т.е. что |х - х|£D или |w - р|£D. Вероятность р при этом называют доверительной вероятностью, а пределы, в которых с этой вероятностью может находится генеральная характеристика, называют доверительными пределами (или границами) этой характеристики. Доверительные пределы генеральной средней или доли определяются на основе неравенств |х – х|£D или |w - р|£D, из которых следует, что х - D£ х £ х + D или w - D£ р £w + D.

Так, если при определении среднего числа дней, отработанных колхозниками за год, ошибка выборки с доверительной вероятностью р = 0,99 оказалось равной двум дням, то пределы, в которых может находиться генеральная средняя, определяется следующим образом 260 – 2 £ х £ 260 + 2 или 258 £ х £ 262, т.е. с вероятностью, равной 0,99 утверждать, что среднее число отработанных за год колхозниками района дней находится в пределах от 258 до 262.

Возможные расхождения между характеристиками выборочной и генеральной совокупности измеряются средней ошибкой выборки m. В математической статистике доказывается, что значения средней ошибки выборки определяются по формуле:

s02

m = ------

Ön

На практике для определения средней ошибки выборки обычно используются дисперсии выборочной совокупности s2.

n

s02 = s2 (------)

n - 1

Если n достаточно велико, то отношение n/n-1 близко к единице.

При замене генеральной дисперсии s02дисперсией выборочной s2формула расчета средней ошибки записывается так:

s2

m = ----

Ön

Следует иметь в виду, что эта формула применяется для определения средней ошибки выборки лишь при так называемом повторном отборе.

Поскольку при бесповторном отборе численность генеральной совокупности в ходе выборки сокращается, то в формулу для расчета средней выборки включают дополнительный множитель 1 – n/N. Формула средней ошибки выборки принимает следующий вид:

s2 n

m = ----- (1 - -----).

ÖnN

Для практики выборочных обследований важно, что средняя ошибка выборки применяется для установления предела отклонений характеристик выборки из соответствующих показателей генеральной совокупности небезотносительно. Лишь с определенной степенью вероятности можно утверждать, что эти отклонения не превысят величины t×m, которая в статистике называется предельной ошибкой выборки.

Предельная ошибка выборки D связана со средней ошибкой выборки m отношением: D=t×m

При этом t как коэффициент кратности средней ошибки выборки зависит от вероятности, с которой гарантируется величина предельной ошибки выборки.

Если в формулу подставить конкретное содержание m, то расчет предельной ошибки выборки при бесповторном отборе можно записать следующими алгоритмами:

а) доля альтернативного признака:

w (1 - w) n

Dw = t ------------ (1 - -----)

Ö n N

б) средняя величина количественного признака:

sх2n

Dх = t ------ (1 - ----)

ÖnN

При этом следует иметь в виду, что при сравнительно небольшом проценте единиц, взятых в выборку (до 5 %), множитель (1 – n/N) близок к единице. Поэтому на практике при расчете величины предельной ошибки выборки (при бесповторном отборе) множитель (1 – n/N) можно опустить, и расчет производится по формулам повторного отбора, т.е.:

w (1 - w)

Dw = t ------------

Ön

s2

Dх = t --------

Ön

3. Определение необходимого объема выборки

При организации выборочного обследования следует иметь в виду, что размер ошибки выборки прежде всего зависит от численности выборочной совокупности n. Средняя ошибка выборки обратно пропорциональна Ön, т.е. при увеличении, например, численности выборки в четыре раза ее ошибки уменьшатся вдвое.

Пример, отбираем из генеральной совокупности не 5 %, а, например, 20 % готовой продукции. Численность выборки n будет равна 400 шт. Тогда при условии, что sw = 15,4 г, размер ошибки для выборочной средней при повторном отборе составит:

15,42

mх = -------- = ± 0,17 г.

400

Увеличивая численность выборки, можно довести ее ошибку до сколь угодно малых размеров. Можно представить, что при доведении n до размеров N ошибка выборки m становится равной нулю. Но так как при проведении выборочных обследований в торговле определение характеристик выборки в ряде случаев сопровождается разрушением обследуемых образцов, то нормы отбора проб в выборку должны быть минимальными. Это сообразуется с основным преимуществом несплошного наблюдения: получением необходимой информации с минимальными затратами времени и труда. Поэтому вопрос об оптимальной численности выборки имеет важное практическое значение. Повышение процента выборки, как правило, ведет к увеличению объема исследовательской работы, вызывает дополнительные затраты труда и материальных средств. Но, с другой стороны, если в выборку взять недостаточное количество проб (образцов), то результаты исследования могут содержать большие погрешности. Все это необходимо учитывать при организации выборочного обследования.


Страница: