Общая теория статистики (лекции, задачи, подготовка к екзамену)Рефераты >> Статистика >> Общая теория статистики (лекции, задачи, подготовка к екзамену)
Если коэффициент ассоциации ³ 0,5, а коэффициент контингенции ³ 0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.
Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:
С - коэффициент Пирсена
К - коэффициент Чупрова
j - показатель взаимной сопряженности
K - число значений (групп) первого признака
K1 - число значений (групп) второго признака
fij - частоты соответствующих клеток таблицы
mi - столбцы таблицы
nj - строки
Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:
Группа признака Y |
Группа признака X |
1 |
2 |
. |
i |
Итого: |
1 |
f11 |
f12 |
. |
f1i |
n1 | |
2 |
f21 |
f22 |
. |
f2i |
n2 | |
. |
. |
. |
. |
. |
. | |
j |
fji |
fj2 |
. |
fji |
nj | |
Итого: |
m1 |
m2 |
. |
mi |
SSminj |
При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.
n - число наблюдений
S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.
S=P+Q
P - сумма значений рангов, следующих за данными и превышающих его величину
Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).
При наличии связанных рангов формула коэффициента Кендалла будет следующей:
Vx и Vy определяются отдельно для рангов X и Y по формуле:
5. Методы выявления основной тенденции рядов динамики.
Уровни ряда динамики формируются под вниманием 3-х групп факторов:
1. Факторов определяющих основное направление, т.е. тенденцию развития изучаемого явления.
2. Факторов действующих периодически, т.е. направленных колебаний по неделям месяца, месяцам года и т.д.
3. Факторов действующих в разных, иногда в противоположных направлениях и не оказывающих существенного влияния на уровень данного ряда динамики.
Основной задачей статистического изучения данамики является выявление тенденции.
Основными методами выявления тенденции рядов динамики являются:
- метод укрупнения интервалов
- метод скользящей средней
- метод аналитического выравнивания
1. Сущность метода укрупнения интервалов заключается в следующем:
Исходный ряд динамики преобразуется и заменяется другими состоящими из других уровней, относящихся к укрупненным периодам или моментам времени.
Например: ряд динамики прибыли малого предприятия за 1997 год по кварталам того же года. При этом уровни ряда за укрупненные периоды или моменты времени могут представлять собой либо суммарные, либо средние показатели. Однако в любом случае рассчитанные таким образом уровни ряда более отчетливо выявляют тенденции, поскольку сезонные и случайные колебания при суммировании или определении средних взаимопогашаются и уравновешиваются.
2. Метод скользящей средней, как и предыдущий предполагает преобразование исходного ряда динамики. Для выявления тенденции формируются интервал, состоящий из одинакового числа уровней. При этом каждый последующий интервал получается путем смещения на 1 уровень от начального. По образованным таким образом интервалам определяются в начале сумма, а затем средние. Технически удобнее определять скользящие средние для нечетного интервала. В этом случае рассчитанная средняя величина будет относиться к конкретному уровню ряда динамики, т.е. к середине интервала скольжения.
При определении скользящей средней по четному интервалу, расчетное значение средней величины относится к промежутку между двумя уровнями, и таким образом теряют экономический смысл. Это делает необходимыми дополнительные расчеты связанные с центрированием по формуле арифметической простой из двух соседних не центрированных средних.