Общая теория статистики (лекции, задачи, подготовка к екзамену)Рефераты >> Статистика >> Общая теория статистики (лекции, задачи, подготовка к екзамену)
По направлению различают прямую и обратную зависимость.
Прямой называют такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.
Обратная зависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.
50. Анализ взаимосвязи качественных признаков.
Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:
Группы по признаку Y | Группы по признаку X | + | - | Итого: |
+ | a | b | a+b | |
- | c | d | c+d | |
Итого: | a+c | c+d | a+b+c+d |
Если коэффициент ассоциации ³ 0,5, а коэффициент контингенции ³ 0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.
Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:
С - коэффициент Пирсена
К - коэффициент Чупрова
j - показатель взаимной сопряженности
K - число значений (групп) первого признака
K1 - число значений (групп) второго признака
fij - частоты соответствующих клеток таблицы
mi - столбцы таблицы
nj - строки
Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:
Группа признака Y |
Группа признака X |
1 |
2 |
. |
i |
Итого: |
1 |
f11 |
f12 |
. |
f1i |
n1 | |
2 |
f21 |
f22 |
. |
f2i |
n2 | |
. |
. |
. |
. |
. |
. | |
j |
fji |
fj2 |
. |
fji |
nj | |
Итого: |
m1 |
m2 |
. |
mi |
SSminj |
При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.
n - число наблюдений
S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.
S=P+Q
P - сумма значений рангов, следующих за данными и превышающих его величину
Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).
При наличии связанных рангов формула коэффициента Кендалла будет следующей:
Vx и Vy определяются отдельно для рангов X и Y по формуле:
51. Статистические методы изучения взаимосвязей.
Важное место в статистическом изучении взаимосвязей занимают следующие методы:
1. Метод приведения параллельных данных.
2. Метод аналитических группировок.
3. Графический метод.
4. Балансовый метод.
5. Индексный метод.
6. Корреляционно-регрессионный.
1. Сущность метода приведения параллельных данных заключается в следующем:
Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.
3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:
а \, б/ (вверх) , в\ (вниз).
Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.
Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.
Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.
На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.
Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле: