Общая теория статистики (лекции, задачи, подготовка к екзамену)
Рефераты >> Статистика >> Общая теория статистики (лекции, задачи, подготовка к екзамену)

По направлению различают прямую и обратную зависимость.

Прямой называют такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.

Обратная зависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.

50. Анализ взаимосвязи качественных признаков.

Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:

Группы по признаку Y

Группы по признаку X

+

-

Итого:

+

a

b

a+b

-

c

d

c+d

Итого:

a+c

c+d

a+b+c+d

Если коэффициент ассоциации ³ 0,5, а коэффициент контингенции ³ 0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.

Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:

С - коэффициент Пирсена

К - коэффициент Чупрова

j - показатель взаимной сопряженности

K - число значений (групп) первого признака

K1 - число значений (групп) второго признака

fij - частоты соответствующих клеток таблицы

mi - столбцы таблицы

nj - строки

Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:

Группа признака Y

Группа признака X

1

2

.

i

Итого:

1

f11

f12

.

f1i

n1

2

f21

f22

.

f2i

n2

.

.

.

.

.

.

j

fji

fj2

.

fji

nj

Итого:

m1

m2

.

mi

SSminj

При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

n - число наблюдений

S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.

S=P+Q

P - сумма значений рангов, следующих за данными и превышающих его величину

Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).

При наличии связанных рангов формула коэффициента Кендалла будет следующей:

Vx и Vy определяются отдельно для рангов X и Y по формуле:

51. Статистические методы изучения взаимосвязей.

Важное место в статистическом изучении взаимосвязей занимают следующие методы:

1. Метод приведения параллельных данных.

2. Метод аналитических группировок.

3. Графический метод.

4. Балансовый метод.

5. Индексный метод.

6. Корреляционно-регрессионный.

1. Сущность метода приведения параллельных данных заключается в следующем:

Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.

3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:

а \, б/ (вверх) , в\ (вниз).

Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.

Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.

Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.

На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.

Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:


Страница: