Выборочный метод наблюдения в социально-экономических исследованияхРефераты >> Статистика >> Выборочный метод наблюдения в социально-экономических исследованиях
2. Ошибки могут быть случайными и систематическими [12].
· Систематические ошибки репрезентативности – ошибки, вызванные нарушением правил выбора единиц совокупности для наблюдения;
· Ошибки репрезентативности (случайные) – ошибки, отражающие несовпадение выводов о части явления с выводами о явлении в целом. Такие ошибки возникают при применении несплошного метода наблюдения, случайные ошибки репрезентативности – ошибки, отражающие неравномерное распределение единиц в совокупности, в связи с чем, выборочная совокупность не корректно характеризует генеральную совокупность.
Способы отбора единиц в выборочную совокупность
Определение способа отбора единиц совокупности является важной частью выборочного исследования [9]. Существует множество способов отбора единиц совокупности, все их можно представить в виде трех групп (см. рис. 1.):
Рис. 1.
Собственно-случайный отбор – выбор единиц совокупности без какой-либо схемы или системы. Может осуществляться методом жеребьевки или с помощью таблицы случайных чисел. При применении данного способа отбора необходимо удостовериться в выполнении принципа рэндомизации.
Отбор с предварительным выделением структуры генеральной совокупности применяется, если исследуется структурированная (распределенная на группы) совокупность. Серийный отбор предполагает выбор одной группы единиц, внутри которой производится сплошное обследование, среди всех групп. Районированный отбор представляет собой определение границ выборочной совокупности с учетом территориальной принадлежности единиц генеральной совокупности. Механический отбор применяется для совокупности, в которой каждой единице присвоен отдельный номер, а выбор осуществляется пропорционально количеству единиц, например, каждая десятая единица и др [10].
Ступенчатый или смешанный отбор применяется в случае поэтапного проведения выборочного наблюдения, когда на разных этапах наблюдения используют различные варианты отбора единиц.
Все приведенные выше способы, с точки зрения математической статистики, делятся на повторные и бесповторные. Повторный отбор предоставляет единице совокупности возможность быть отобранной еще один или несколько раз при условии сохранения принципа рэндомизации. Соответственно, бесповторным называется отбор, при котором единица, будучи однажды исследованной, исключается из генеральной совокупности. Тем самым, устраняется возможность ее повторного отбора в качестве представителя генеральной совокупности [11]. Отличие в методах повторного и бесповторного отбора математически отображают с помощью поправочного коэффициента на бесповторность (К):
n – численность единиц выборочной совокупности; N – численность единиц генеральной совокупности.
В математической статистике разработана методика анализа выборочного наблюдения случайных явлений. Основой такого анализа является предположение о множественности производимых выборочных наблюдений, и, как следствие, построение целого ряда распределения вероятностей различных характеристик полученных выборок[3]. Предполагается осуществление только отдельного выборочного наблюдения.
Результаты выборочного наблюдения должны быть корректно перенесены на генеральную совокупность. При применении выборочного метода всегда происходит погашение особенностей отдельных единиц генеральной совокупности. Именно поэтому предполагается несоответствие параметров генеральной совокупности параметрам выборочной, т.е. наличие больших или меньших ошибок наблюдения. Чтобы исключить такое несоответствие параметры генеральной совокупности обычно представляют не с помощью отдельного значения, а в виде границ интервала, в пределах которого могут происходить колебания параметров.
Применение выборочного исследования предполагает определение параметров совокупности с некоторой степенью точности. Причем, точность зависит от меры репрезентативности выборки относительно генеральной совокупности, т.е. от качества выборочных данных. Чем хуже представлена в выборке генеральная совокупность, тем меньше степень точности выводов. Следовательно, тем дальше должны быть «раздвинуты» пределы интервала, в которых может колебаться параметр генеральной совокупности.
Еще одним определителем степени точности выводов служит их последующее применение. То есть, чем более корректные данные о генеральной совокупности требуется получить, тем дальше «раздвигаются» пределы интервала. Например, если исследование проводится в целях обучения студентов методике выборки, то принимается условная (низкая) степень точности. Тогда как, исследование, необходимое для государственного управления, предполагает высокую степень точности.
Средняя и предельная ошибка для показателей средней величины
Обобщающей характеристикой совокупности по изучаемому признаку является средняя величина признака. Поэтому, как правило, сначала рассчитывают среднее значение признака для выборочной совокупности ( ), а затем, исходя из меры соответствия между генеральной и выборочной совокупностями, определяют пределы, в которых может колебаться среднее значение признака в генеральной совокупности ( ).
Поскольку точные характеристики генеральной совокупности не определены, то указать единичное значение расхождения между средними для выборочной и генеральной совокупностей невозможно. В связи с этим, определяют средний размер всех возможных ошибок ( ) выборочного наблюдения. Другими словами, показатель называется средняя ошибка выборочной средней. Для повторного отбора [8]:
– дисперсия выборочной совокупности;
n – численность единиц выборочной совокупности [13].
С применением поправочного коэффициента на бесповторность средняя ошибка выборочной средней для бесповторного отбора будет определяться следующим образом:
– дисперсия выборочной совокупности;
N – численность единиц генеральной совокупности.
То есть, средняя в генеральной совокупности может отклониться от средней в выборочной совокупности в сторону увеличения или уменьшения на величину .
Предельная ошибка выборочной средней ( ) определяет границы, в пределах которых может колебаться среднее значение генеральной совокупности относительно среднего значения выборки. Различия между средней и предельной ошибкой обусловлены величиной коэффициента доверия t.