Анализ страховой деятельности
Рефераты >> Статистика >> Анализ страховой деятельности

Увеличение страховых выплат в период 1992 -1999 гг. во многом связано с экономическими реформами, которые создали реальные предпосылки для организации системы новой системы страхования, принятием законов, развивающих и поощряющих страховую деятельность и постепенным развитием этой отрасли не только на государственном уровне.

Применение перечисленных показателей динамики является первым этапом анализа динамических рядов, позволяющих выявить скорость и интенсивность развития явлений, которые представлены рядом. Дальнейший анализ связан с более сложными обобщениями, с определением основной тенденции ряда, чем мы и займемся в следующей части работы.

2.3. Выявление основной тенденции ряда. Аналитическое выравнивание.

Наиболее эффективным способом выявления основной тенденции развития является аналитическое выравнивание. При этом уровни ряда динамики выражаются в виде функции времени.

Аналитическое выравнивание является предпосылкой для применения других приемов углубленного изучения развития социально - экономических явлений во времени, для изучения колеблемости данных в динамике, их связи с другими явлениями.

В практике социально-экономических исследований применяется аналитическое выравнивание по прямой, параболе второго и третьего порядка, гиперболе, экспоненте. Аналитическое выравнивание состоит в подборе для данного ряда динамики теоретической кривой, выражающей основные черты фактической динамики, т.е. в подборе теоретически плавной кривой, наилучшим образом описывающей эмпирические данные.

Проанализируем данные по страховым выплатам по видам страховой деятельности, используя таблицу 7.

Таблица7.

период

времени

личное страхование, млн. руб., y

t

yt

yt  

1992

11.16

-7

49

-78,12

-4164,90

1993

259.74

-5

25

-1298,7

72,26

1994

2877.83

-3

9

-8633,49

4309.42

1995

9159.33

-1

1

-9159,33

8546,58

1996

10229.11

+1

1

10229,11

12783,74

1997

10679.17

+3

9

32037,51

17020,90

1998

15955.41

+5

25

79777,05

21258,06

1999

36149.54

+7

49

253046,78

25495,22

ИТОГО

85321,29

 

168

355920,81

85321,29

Произведем аналитическое выравнивание по прямой. Для этого используем выражение:

y0 = a0 + a1t , где t - условное обозначение времени, а а0 и а1 - параметры искомой прямой.

Параметры прямой, удовлетворяющей методу наименьших квадратов, находятся из решения системы уравнений:

na0 + a1åt = åy

a0åt + aåt² = åyt , где y - фактические уровни, n - число членов ряда динамики.

Система упрощается, если t подобрать так, чтобы их сумма равнялась нулю, т.е. начало отсчета времени перенести в середину рассматриваемого периода. Тогда

а0 = å y/n ; a­1 = åyt/t²

Поскольку число уровней четное (n = 8), то распределение при åt = 0 будет следующим (3-я колонка в таблице 7).

Из таблицы находим:

n = 8; åy = 85321,29; åyt = 355920,81; åt² = 168.

a0 = 85321,29/8 = 10665,16; a1 = 355920,81/168 = 2118,58

Уравнение прямой будет иметь вид: yt = 10665 + 2118,58t

По уравнению найдем расчетные значения выровненных уровней ряда динамики (последняя колонка в таблице 7).

Графически результаты произведенного аналитического выравнивания ряда динамики страховой деятельности и фактические данные будут выглядеть следующим образом:

Рис.1.

Сумма уровней эмпирического ряда (åy) совпадает с суммой расчетных значений выравненного ряда åyt. А полученное уравнение показывает, что сумма личного страхования растет приблизительно на 4200 млн.руб. в год.

Мы произвели аналитическое выравнивание ряда динамики личного страхования по прямой. Рассмотрим данные по обязательному страхованию и произведем выравнивание по многочлену более высокой степени - по параболе второго порядка:


Страница: