Сравнительный анализ нейросетевых реализаций алгоритмов распознавания образов
Рефераты >> Кибернетика >> Сравнительный анализ нейросетевых реализаций алгоритмов распознавания образов

3.5 Возникновение ложного образа. Выработка прототипа.

Устойчивыми состояниями сети Хопфилда могут быть также образы, не записанные ее память - ложные образы. На Рис. 5. Приложение 1. показан пример устойчивого ложного образа (d), возникающий при распознавании стимулов сетью, в матрице связей которой записаны образы a, b, c.

При увеличении числа образов, записываемых в память системы, отвечающие им минимумы энергии могут сливаться. На рис. 6. Приложение 1. показана группа образов (получающихся при небольших искажениях), записанные в память сети - a, b, c. При предъявлении сети этих образов для распознавания, сеть приходит к состоянию, соответствующего выработанному прототипу - d.

Модель демонстрирует процедуру разобучения, предназначенную для устранения из памяти ложных образов. Разобучение состоит в предъявлении сети образа, к которому релаксировал стимул. При этом из матрицы связи вычитается тот член, который при обучении бы прибавлялся. В применении к случаю прототипа с тремя записанными в памяти образами (см. Рис. 6. Приложение 1.), разобучение приводит к исчезновению прототипа и к появлению вместо одной потенциальной ямы, соответствующей прототипу, трех потенциальных ям, соответствующих каждому образу, записанному в памяти сети.

3.6 Бистабильность восприятия.

Эксперименты с моделью сети Хопфилда показали (см. Рис. 7. Приложение 1.), что средние стимулы последовательности могут восприниматься либо как искаженный левый, либо как искаженный правый образы, т. е. имеет место бистабильность восприятия. Смена устойчивого состояния происходит после предъявления четвертой картинки.

Заключение.

В работе созданы программные модели трех нейронных сетей: персептрон, сеть обратного распросранения и сеть Хопфилда. Модели позволяют проиллюстрироваь основные достоинства и недостатки, а также ряд специфических свойств реализованных моделей.

Во всех моделях для приложения внешнего стимула использовалась, специально разработанная программно, измерительная сетчатка.

Результаты серии экспериментов, проведенных на моделях, показали, что:

· Способность персептрона и сети обратного распространения моделировать определенную функцию зависит от допустимой общей ошибки сети.

· Топологическая структура сети Хопфилда обуславливает ее свойства, которые можно интерпритировать как релаксация стимула, выработка прототипа, бистабильность восприятия.

В дальнейшем планируется разработка программных моделей более сложных нейронных сетей и их комбинаций с целью получения наиболее эффективных алгоритмов для задачи распознавания образов.

Литераура.

1.Горбань А.Н.,Россиев Д.А Нейронные сети на персональном компьюере.

2. Минский М.Л.,Пайперт С Персепроны.М.: Мир.1971

3. Розенблатт Ф.Принципы нейродинамики.М.: Мир.1965

4. Уоссермен Ф.Нейрокомпьютерная техника.М.: Мир.1992.237С

5. Cohen M.A.,Grossberg S.G.Absoiute stability of global pattern formation and parallel memory storage by compatitive neural networks.1983

6. Hebb D.O.Organization of behavior.New York:Science Edition

7. Hopfield J.J.Neural networks and physical systems with emergent collective computational abilities. Proseedings of the National Academy of Science 79.1982

8. Parker D.B. Learning-logic. Invention Report. 1982

9. Rumelhart D.E. Hinton G.E.,Williams R.J. Learning internal representations by error propagation. In Parallel distributed processing, vol.1986

10. Werbos P.G. Beyond regression: New tools for prediction and analysis in the behavioral sciences. 1974

11. Wider R.O. Single-stage logic, Paper presented at the AIEE Fall General Meeting. 1960

12. Windrow B. The speed of adaptetion in adaptive control system. 1961

13. Windrow B. A statistical theory of adaptetion. Adaptive control systems. 1963

14. Windrow B., Angell J.B. Reliable, trainable networks for computing and control. 1962

15. Windrow B., Hoff N.E. Adaptive switching circuits. 1960

Приложение 1.

Рис. 1.

Рис. 2.

Рис. 3.


Страница: