Синтез и анализ аналоговых и цифровых регуляторов
Рефераты >> Кибернетика >> Синтез и анализ аналоговых и цифровых регуляторов

и равна

.

Z-передаточная функция замкнутой цифровой системы по каналу задание – выходная величина равна

(5.16)

и равна

.

Вычислим коэффициенты усиления по указанным каналам. По определению коэффициент усиления есть отношение изменения на выходе к изменению на входе в установившемся режиме, т.е.

. (5.17)

Так как

, (5.18)

то подставляя выражения (5.15) и (5.16) в выражение (5.17) найдем, что j(¥)=1, а m(¥)=0,4. Так как Dx(¥)=1, а j(0-)=0 и m(0-)=0, то коэффициент усиления по каналу задание – выходная величина равен 1, а по каналу задание – управляющие воздействие равен 0,4.

Построим переходную функцию цифрового фильтра. Она равна

.

Для вычисления f[n] найдем полюса функции

.

Находим 2 полюса 1-го порядка и 1 полюс 2-го порядка. Полюса 1-го порядка: z=-0,307 и z=-0,045. Полюс 2-го z=1. Для вычисления переходной функции необходимо вычислить производную следующей функции . Производная данного выражения равна

.

Тогда передаточная функция примет вид

.

Изобразим переходный процесс на графике.

Рисунок 5.2 – Переходная функция цифрового фильтра.

Для построения переходных процессов в замкнутой цифровой системе по каналам задание – выходная величина и задание – управляющие воздействие воспользуемся уравнениями в конечных разностях.

Суть метода заключается в следующем. Пусть передаточная функция цифровой системы

.

Этой передаточной функции соответствует уравнение в конечных разностях:

.

Значение искомой выходной величины равно

. (5.19)

Согласно формуле (5.19) получим, что переходная функция замкнутой цифровой системе по:

· каналу задание – выходная величина

y[k]=0,647726×x[k-1] –0,620803×x[k-2] –0,037272×x[k-3] +0,149369×x[k-4] –0,024633×x[k-2] –0,001394×x[k-2] +1,481007×y[k-1] –0,695097×y[k-2]+ +0,101098×y[k-3];

· каналу задание – управляющие воздействие

y[k]=3,540075×x[k] –10,485749×x[k-1] +12,686121×x[k-2] – –8,004397×x[k-3] +2,770507×x[k-4] –0,497542×x[k-5]+0,036182×x[k-6]+ +1,481007×y[k-1] –0,695097×y[k-2]+ +0,101098×y[k-3].

Данные расчетов были сведены в таблицы с учетом того, что x[k]=1.

Таблица 5.1 – Переходная функция замкнутой цифровой системе по каналу задание – выходная величина

k

y[k]

0

0

1

0,648

2

0,986

3

1

4

1

6 Оптимальное управляющие воздействие и реакция на него приведенной непрерывной части

Оптимальное управляющие воздействие было найдено в пункте 5 и в координатах времени имеет следующий вид:

m(t)=3,54(h(t)-h(t-T0)) –1,703(h(t-T0)-h(t-2*T0))+ (6.1)

+0,758(h(t-2*T0)-h(t-3*T0))+0,4 h(t-3*T0),

где

h(t) – функция Хевисайда;

T0 – период квантования равный 1,25.

Тогда

m(t)=3,54(h(t)-h(t-1,25)) –1,703(h(t-1,25)-h(t-2,5))+ (6.2)

+0,758(h(t-2,5)-h(t-3,75))+0,4 h(t-3,75).

Изобразим данное управляющее воздействие на графике.

Рисунок 6.1 – Оптимальное управляющие воздействие.

Для нахождения реакции непрерывной линейной части на данное воздействие воспользуемся изображением Лапласа. Используя свойство линейность данного изображения и теорему запаздывания найдем, что

j(t)= 3,54(g(t) - g(t-1,25)) –1,703(g(t-1,25)-g(t-2,5))+ (6.3)

+0,758(g(t-2,5)-h(t-3,75))+0,4 h(t-3,75),

где

g(t)=f(t)h(t),

– переходная функция линейной части, найденная нами в пункте 4.

Изобразим реакцию непрерывной линейной части на оптимальное управляющие воздействие.

Рисунок 6.2 – Реакция непрерывной линейной части на оптимальное управляющие воздействие

На этом все построения окончены.

Заключение

В данной курсовой работе был сделан синтез и анализ оптимальной одноконтурной САУ при использовании трех типов регуляторов, реализующих П-, ПИ- и ПИД-закон регулирования. Проведены сравнительный характеристики данных типов регуляторов и был сделан вывод, что ПИД-закон регулирования является наилучшим среди рассмотренных.

Были проведены расчеты по использованию данных регуляторов в цифровых системах. Как показали расчеты, несмотря на то, что цифровые системы – это системы дискретного действия и действуют через определенные промежутки времени, переходные процессы в цифровых системах не сильно отличаются от переходных процессов в непрерывных системах, а конечное состояние выходной величины одинаково. Кроме того развитие микропроцессорной техники и использование теории управления в цифровых системах позволяют создать регуляторы различной сложности и с заранее заданных свойствами. Один из регуляторов, обеспечивающий перевод системы из одного состояния в другое за минимальное число периодов квантования при наличии ограничения на управляющие воздействие, был синтезирован в данной курсовой работе.


Страница: