Построение информационно-управляющей системы с элементами искусственного интеллектаРефераты >> Кибернетика >> Построение информационно-управляющей системы с элементами искусственного интеллекта
, получим
(2.3)
где
тогда
(2.4)
Полученная система интегро-дифференциальных уравнений (2.3,2.4) описывает структуру контура самонастройки информационно-параметрической системы идентификации по параметру и его алгоритм функционирования. Поступая аналогично, найдем структуру и алгоритм функционирования контура самонастройки информационно-параметрической системы идентификации по параметрам .
(2.5)
(2.6)
Здесь
-коэффициенты передачи контуров самонастройки по параметрам соответственно.
Полученная система интегродифференциальных уравнений (2.5-2.6) описывают структуру контуров самонастройки информационно-параметрической системы по параметру .
В целом система интегродифференциальных уравнений (2.3-2.6) описывает структуру информационно-параметрической системы идентификации и ее алгоритм функционирования.
Циклограмма работоспособности информационно-параметрической системы идентификации, поясняющая принцип ее работы, приведена на рис.3
3.ПОСТРОЕНИЕ АДАПТИВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ НЕСТАЦИОНАРНЫМ ДИНАМИЧЕСКИМ ОБЪЕКТОМ.
Полученная структура системы управления квазистационарным объектом (рис.2) обеспечивает устойчивость и заданные показатели качества на интервале квазистационарности при условии постоянства параметров объекта управления на этом интервале времени. При наличии изменений параметров объекта управления управляющее воздействие , вырабатываемое регулятором (управляющим устройством) с жесткой отрицательной обратной связью, не обеспечивает устойчивости и заданных показателей качества квазистационарной системы. В работу вступает гибкая параметрическая обратная связь, т. к. управляющему устройству в этом случае необходима информация о параметрическом состоянии нестационарного объекта управления.
Выработанное управляющим устройством воздействие с учетом информации о параметрическом состоянии нестационарного объекта управления будет сводить к ошибку рассогласования регулируемого процесса
, где -изменение вектора параметров управляющего устройства.
3.1. Синтез адаптивной системы управления нестационарным объектом с элементами искусственного интеллекта.
Для оценки качества регулируемого процесса нестационарного объекта управления выберем интегральный критерий минимума среднеквадратической ошибки регулируемого процесса, зависящего от изменения параметров объекта управления , изменения параметров управляющего устройства , и задающего воздействия
.
(3.1.1)
где
(3.1.2)
(3.1.3)
здесь
Решив выражение (3.1.2) относительно с учетом (3.1.3), получим
(3.1.4)
где -вектор настраиваемых параметров регулятора (управляющего устройства), обеспечивающий качество регулируемого процесса.
Учитывая то, что на состояние нестационарного объекта управления в каждом -том цикле может указать самонастраивающаяся модель объекта, положим в уравнении (3.1.4)
(3.1.5)
Тогда выражение сигнала ошибки регулируемого процесса для каждого -го цикла будет иметь вид
(3.1.6)
Подставляя значение выражения (3.1.6) в (3.1.1) имеем:
(3.1.7)
Минимизируя функционал качества (3.1.7) по вектору настраиваемых параметров регулятора на интервале
,получим
(3.1.8)
где
(3.1.9)
(3.1.10)
(3.1.11)
Полученные выражения (3.1.8-3.1.11) описывают структуру и алгоритм функционирования системы анализа параметрического состояния нестационарного объекта управления в векторно-матричной форме.
Подставляя значения в (3.1.7), получим
(3.1.12)
Взяв частные производные от минимизируемого функционала качества по настраиваемым параметрам регулятора , с учетом выражения (3.1.8) получим:
(3.1.13)
(3.1.14)
Тогда
(3.1.15)
Полученные выражения (3.1.13-3.1.15) описывают контур самонастройки системы анализа параметрического состояния и принятия решения по параметру .