Построение информационно-управляющей системы с элементами искусственного интеллекта
Рефераты >> Кибернетика >> Построение информационно-управляющей системы с элементами искусственного интеллекта

динамическая матрица о/у (1.9)

матрица управления о/у (1.10)

вектор управляющих воздействий (1.11)

матрица измерений (1.12)

Определяем переходную матрицу состояний в виде:

Находим передаточные функции звеньев системы управления, для чего представляем систему дифференциальных уравнений (1.1) в операторной форме:

(1.13)

(1.14)

Вынесем общий множитель за скобки

(1.15)

Передаточная функция первого звена

где

тогда

(1.16)

Подставляем численные значения (см.т/з):

Передаточная функция второго звена:

где

тогда

(1.17)

Подставляем численные значения:

Используя заданный коэффициент ошибки по скорости, находим требуемый коэффициент усиления на низких частотах:

(1.18)

Для обеспечения требуемого коэффициента усиления вводим пропорциональное звено с коэффициентом усиления , равным

Передаточная функция системы численно равна:

(1.19)

1.2 Построение логарифмических АЧХ и ФЧХ нескорректированной системы.

Заменив в выражении (1.19) , получим комплексную амплитудно-фазочастотную функцию разомкнутой системы:

(1.20)

Представим (1.20) в экспоненциальной форме:

(1.21)

Здесь

(1.22)

(1.23)

Логарифмируем выражение (1.22):

(1.24)

Слагаемые на частотах

равны нулю, а на частотах принимают значения .

Соответственно, тогда логарифмическая амплитудно-частотная характеристика определяется выражением:

(1.25)

Определим частоты сопряжения:

(1.26)

Для построения логарифмических частотных характеристик выбираем следующие масштабы:

-одна декада по оси абсцисс-10 см;

-10 дб по оси ординат-2 см;

-90° по оси ординат-4.5 см.

В этих масштабах откладываем:

-по оси частот-сопрягающие частоты;

-по оси ординат-значение

Через точку проводим прямую с наклоном -40 дб/дек, до частоты сопряжения

на частоте сопрягается следующая прямая с наклоном -20 дб/дек по отношению к предыдущей прямой .Эта прямая проводится до частоты сопряжения

на частоте сопрягается третья прямая с наклоном -20 дб/дек по отношению ко второй прямой.

Третья прямая проводится до частоты сопряжения

Полученная таким образом ломаная кривая представляет собой ЛАЧХ разомкнутой нескорректированной квазистационарной системы, первая прямая проходит с наклоном к оси частот-40 дб/дек;вторая-20 дб/дек;третья0 дб/дек;

четвертая-20 дб/дек.

Фазочастотная характеристика нескорректированной разомкнутой системы строится в тех же координатах согласно выражения (1.24) , где

-первое слагаемое -это прямая, проходящая параллельно оси частот на расстоянии ;

-второе-четвертое слагаемые-тангенсоиды с точками перегиба на частотах сопряжения; в области высоких частот асимптотически приближаются к , а при

Алгебраическая сумма ординат всех четырех характеристик дает фазочастотную характеристику нескорректированной разомкнутой системы

Для определения запасов устойчивости не скорректированной системы по амплитуде и по фазе необходимо:

-точку пересечения суммарной ФЧХ с линией спроектировать на ЛАЧХ, тогда расстояние проекции этой точки до оси частот будет величиной запаса устойчивости по амплитуде в дб. Если же проекция этой точки окажется выше оси частот, то запаса устойчивости по амплитуде нет.

-проекция частоты среза на суммарную ФЧХ относительно линии определяет величину запаса устойчивости по фазе в градусах, если проекция точки находится выше линии .


Страница: