Построение информационно-управляющей системы с элементами искусственного интеллектаРефераты >> Кибернетика >> Построение информационно-управляющей системы с элементами искусственного интеллекта
динамическая матрица о/у (1.9)
матрица управления о/у (1.10)
вектор управляющих воздействий (1.11)
матрица измерений (1.12)
Определяем переходную матрицу состояний в виде:
Находим передаточные функции звеньев системы управления, для чего представляем систему дифференциальных уравнений (1.1) в операторной форме:
(1.13)
(1.14)
Вынесем общий множитель за скобки
(1.15)
Передаточная функция первого звена
где
тогда
(1.16)
Подставляем численные значения (см.т/з):
Передаточная функция второго звена:
где
тогда
(1.17)
Подставляем численные значения:
Используя заданный коэффициент ошибки по скорости, находим требуемый коэффициент усиления на низких частотах:
(1.18)
Для обеспечения требуемого коэффициента усиления вводим пропорциональное звено с коэффициентом усиления , равным
Передаточная функция системы численно равна:
(1.19)
1.2 Построение логарифмических АЧХ и ФЧХ нескорректированной системы.
Заменив в выражении (1.19) , получим комплексную амплитудно-фазочастотную функцию разомкнутой системы:
(1.20)
Представим (1.20) в экспоненциальной форме:
(1.21)
Здесь
(1.22)
(1.23)
Логарифмируем выражение (1.22):
(1.24)
Слагаемые на частотах
равны нулю, а на частотах принимают значения .
Соответственно, тогда логарифмическая амплитудно-частотная характеристика определяется выражением:
(1.25)
Определим частоты сопряжения:
(1.26)
Для построения логарифмических частотных характеристик выбираем следующие масштабы:
-одна декада по оси абсцисс-10 см;
-10 дб по оси ординат-2 см;
-90° по оси ординат-4.5 см.
В этих масштабах откладываем:
-по оси частот-сопрягающие частоты;
-по оси ординат-значение
Через точку проводим прямую с наклоном -40 дб/дек, до частоты сопряжения
на частоте сопрягается следующая прямая с наклоном -20 дб/дек по отношению к предыдущей прямой .Эта прямая проводится до частоты сопряжения
на частоте сопрягается третья прямая с наклоном -20 дб/дек по отношению ко второй прямой.
Третья прямая проводится до частоты сопряжения
Полученная таким образом ломаная кривая представляет собой ЛАЧХ разомкнутой нескорректированной квазистационарной системы, первая прямая проходит с наклоном к оси частот-40 дб/дек;вторая-20 дб/дек;третья0 дб/дек;
четвертая-20 дб/дек.
Фазочастотная характеристика нескорректированной разомкнутой системы строится в тех же координатах согласно выражения (1.24) , где
-первое слагаемое -это прямая, проходящая параллельно оси частот на расстоянии ;
-второе-четвертое слагаемые-тангенсоиды с точками перегиба на частотах сопряжения; в области высоких частот асимптотически приближаются к , а при
Алгебраическая сумма ординат всех четырех характеристик дает фазочастотную характеристику нескорректированной разомкнутой системы
Для определения запасов устойчивости не скорректированной системы по амплитуде и по фазе необходимо:
-точку пересечения суммарной ФЧХ с линией спроектировать на ЛАЧХ, тогда расстояние проекции этой точки до оси частот будет величиной запаса устойчивости по амплитуде в дб. Если же проекция этой точки окажется выше оси частот, то запаса устойчивости по амплитуде нет.
-проекция частоты среза на суммарную ФЧХ относительно линии определяет величину запаса устойчивости по фазе в градусах, если проекция точки находится выше линии .