Расчет по минеральным удобрениям
Рефераты >> Ботаника и сельское хоз-во >> Расчет по минеральным удобрениям

1.Гречихи

2.Кукурузы на зерно

А также определен валовой сбор продукции по таким культурам как:

1 Озимая пшеница

2 Яровая пшеница

3 Ячмень

4 Кукуруза на зерно

5 Гречиха

6 Горох

Произведен расчет площадей занятых под эти культуры.

Произведен расчет минеральных удобрений внесенных под эти культуры.

Произведены расчеты средних величин по каждой культуре.

Определены среднеквадратические отклонения и коэффициенты корреляций.

При проведении анализа были использованы данные статотчетности 12 хозяйств Октябрьского района Ростовской области за 1995 г.

В результате сравнительного анализа выявлено, что связь между внесением азотных и калийных удобрений и урожайностью гречихи слабая, поскольку коэффициент корреляции составляет 0,24.

Кукуруза на зерно лучше отзывается на внесение минеральных удобрений. Связь между признаками средняя, коэффициент корреляции составляет 0,5.

2.Методы статистических исследований.

2.1.Метод группировки.

Под группировкой в статистике понимают расчленение единиц статистической совокупности на группы, однородные в каком-либо существенном отношении, и характеристику таких групп системой показателей в целях выделения типов явлений , изучения их структуры взаимосвязей.

Метод группировки является основой применения других методов статистического анализа основных сторон и характерных особенностей изучаемых явлений. По своей роли в процессе исследования метод группировок выполняет некоторые функции, аналогичные функциям эксперимента в естественных науках: посредствам группировки по отдельным признакам комбинации самих признаков статистика имеет возможность выявить закономерности и взаимосвязи явлений в условиях, в известной мере ею определяемых. При использовании метода группировок появляется возможность проследить взаимоотношение различных факторов и определить силу их влияния на результативные показатели.

В развитие метода группировок огромный вклад внесли российские статистики. Им принадлежит первенство в применении комбинационных таблиц, в разработке классификации таблиц и в проведении многочисленных группировок материалов аграрных переписей и обследований, которые оказали благотворное влияние на развитие других отраслевых статистик и общей методологии. Исключительное значение метода группировок в статистике было сформулировано выдающимся русским ученым Д.П.Журавским (1810 - 1856 г.г.), он определил статистику категорического вычисления, т.е как науку о счете по категориям, по группам. В этом определении подчеркивается одна из специфических черт статистической методологии.

Изучая количественную сторону массовых общественных явлений в неразрывной связи с их качественными особенностями, статистика стремится показать совокупность явлений в дифференциации, в многообразии их типов, рассмотреть взаимосвязи и соотношения между последними. С помощью метода группировок решаются сложные задачи статистического анализа. Учитывая, что необходимость группировки обуславливается прежде всего наличием качественных различий между изучаемыми явлениями, первую задачу группировок можно сформулировать как задачу выделения в составе массового явления тех его частей, которые однородны по качеству и условиям развития, в которых действуют одни и те же закономерности влияния факторов. В результате такой группировки выделяются социально - экономические типы (а отсюда и название группировки - типологическая ) как выражение конкретного общественного процесса, его форм и разветвлений , как выражение существенных черт, общих для множества единичных явлений.

2.2.Исчисление средних.

Средняя величина - обобщающая характеристика изучаемого признака в исследуемой совокупности . Она отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя, рассчитанная по совокупности в целом, называется общей средней, средние, исчисленные для каждой группы, групповыми средними. Общая средняя отражает общие черты изучаемого явления, складывающуюся в конкретных условиях данной группы.

Существуют две категории средних величин:

степенные средние ( к ним относятся средняя арифметическая, средняя гармоническая, средняя геометрическая и др. )

структурные средние ( мода и медиана ).

Выбор того или иного вида средней производится в зависимости от цели исследования, экономической сущности усредняемого показателя и характера имеющихся исходных данных.

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет степенной невозможен или нецелесообразен.

Расчет медианы по не сгруппированным данным производится следующим образом:

а). Расположим индивидуальные значения признака в возрастающем порядке:

Х1,Х2,Х3,Х4,Х5,Х6,Х7,Х8,Х9,Х10,Х11,Х12

б). Определим порядковый номер медианы по формуле:

n+1

№ Ме =

2 12+1

в нашем случае № Ме = =6.5

2

Это означает, что медиана расположена между шестым и седьмым значениями признака, так как ряд имеет четное число индивидуальных значений.

В). Рассмотрим порядок вычисление медианы в случае нечетного числа индивидуальных значений

Х1,Х2,Х3,Х4,Х5,Х6,Х7,Х8,Х9,Х10,Х11

Находим номер медианы: 11+1

№ Ме = = 6

2

на шестом месте стоит Х6 который и является медианой.

Модой называется наиболее часто встречающаяся величина признака. Поскольку мода является величиной конкретной, она имеет важное значение для характеристики структуры изучаемой совокупности. Так, например, наряду со средними размерами заработной платы или средней выработкой большое значение имеют данные о наиболее часто встречающейся з/плате или выработке.

Определение моды зависит от того, в каком ряду представлен варьирующий признак. Если варьирующий признак представлен в виде дискретного ряда распределения , то для определения моды не требуется ни каких вычислений. В таком ряду модой будет значение признака, которая обладает наибольшей частотой.

Если значения признака представлены в виде интервального вариационного ряда, то моду определяют расчетным путем по формуле:

(f2 - f1 )

Мо = Хо+d

( f 2 - f1 ) + ( f 2 - f 3 )

где Мо - Мода

Хо - начало (нижняя граница) модального интервала (с наибольшей численностью);

d - величина интервала (модального);

f 1 - частота интервала предшествующего модальному;

f 2 - частота модального интервала;

f 3 - частота интервала , следующего за модальным;


Страница: