Изменение интенсивности дыхания в онтогенезе растений
Рефераты >> Ботаника и сельское хоз-во >> Изменение интенсивности дыхания в онтогенезе растений

Ферментативные реакции, обеспечивающие биосинтез белков, нуклеиновых кислот, других полимеров и их различных производ­ных, называют анаболическими, в противоположность катаболическим, содержанием которых является разрушение, распад органи­ческих соединений.

Совокупность ферментативных реакций, с помощью которых осуществляется процесс дыхания, относится к категории катаболических.

На протяжении многих десятилетний биологическое значение дыхания сводилось только к высвобождению энергии дыхательного субстрата и использованию ее в процессах, осуществляющихся с затратой энергии. Детальное изучение биохимической природы и ферментативных механизмов, с которыми связан процесс дыхания, позволило убедиться в огромном значении промежуточных про­дуктов, которые возникают на пути преобразования органической молекулы и, являясь активными метаболитами, играют исключительно важную роль в созидательном, конструктивном обмене клетки.

Растительная клетка использует в качестве дыхательного ма­териала самые разнообразные органические вещества, окислитель­но-восстановительные превращения которых осуществляются с участием весьма сложного комплекса каталитических механиз­мов: ферментов, активирующих водород; ферментов, активирую­щих кислород; ферментов, выполняющих роль промежуточных ме­диаторов (или переносчиков электронов); и вспомогательных фер­ментов. Таким образом, сложная цепь сопряженных окислительно-восстановительных процессов представляет собой многозвенное строго отрегулированное сочетание ферментативных систем раз­личной природы, осуществляющих различные функции. Большой набор ферментативных систем, участвующих в акте дыхания, обе­спечивает широкие адаптивные возможности растительного орга­низма к постоянно меняющимся условиям внешней среды (тем­пература, влажность, освещенность, концентрация кислорода и др.). С помощью каталитических систем дыхания запасы сво­бодной энергии, содержащиеся в молекуле органического веще­ства, являющегося дыхательным субстратом, превращаются в мо­бильную форму, легко используемую в любых процессах, связан­ных с потреблением энергии.

Как известно, энергия органических веществ, используемых в качестве дыхательного субстрата, ведет свое происхождение от кванта света, адсорбируемого зеленым растением и небольшой группой фотоавтотрофных микроорганизмов в процессе фотосин­теза. Образующиеся в ходе последнего органические соединении и являются практически единственным источником пластических и энергетических ресурсов, за счет которых и обеспечивается су­ществование всего живого населения земного шара. Необходимо, однако, подчеркнуть, что практически вся масса ассимилятов, со­здаваемых в процессе фотосинтеза, принадлежит к соединениям неспецифических, а в химическом отношении инертным. То же относится и к содержащейся в этих соединениях химической энер­гии, которая также не может быть непосредственно использована для осуществления какого-либо из видов клеточной «работы».

Придание этой потенциальной энергии активной формы, ее преобразование в «энергию действия», равно как и преобразова­ние неспецифических продуктов фотосинтеза в специфические для организма компоненты протопласта, иными словами ассимиляция этих соединений,— таково назначение функции, именуемой дыха­нием. Следовательно, так же как и фотосинтез, дыхание служит целям обеспечения материальных и энергетических потребностей организмов, и в первую очередь, естественно, гетеротрофных. Кроме того, только через системы дыхания удовлетворяются по­требности всех не зеленых клеток зеленого растения и также со­держащих хлорофилл клеток в отсутствие света.

Признавая огромную, ни с чем не сравнимую по значению роль фотосинтеза в становлении органической материи, мы вместе с тем не можем не учитывать, что все создаваемые в ходе этой уникальной функции богатства становятся эффективным достоя­нием живой клетки только благодаря существованию другой столь же важной по выполняемой ею роли, какой является ды­хание.

ВЗАИМОСВЯЗЬ ДЫХАНИЯ И РОСТА РАСТЕНИЙ

Рост растения представляет собой интегральную функцию, на которую откладывает отпечаток вся совокупность процессов жизнедеятельности организма. В основе роста лежит непрерывное новообразование различных элементов структуры и, следователь­но, синтез самых разнообразных клеточных компонентов. Тесная связь дыхания с биосинтетическими функциями клетки позволяет уже априори предполагать, что дыхание должно также оказывать большое влияние и на ростовые процессы у растений.

Однако данные непосредственных наблюдении не всегда ук­ладываются в эту, казалось бы, бесспорную схему. Они свидетель­ствуют о том, что взаимосвязь процессов роста с окислительно-вос­становительными превращениями является сложной и до настоя­щего времени природа этой связи в общем недостаточно изучена. Нередки случаи, когда более активный рост вегетативных органов коррелирует с низкой величиной rН, пониженной активностью ря­да окислительных ферментов, высокой восстановительной актив­ностью тканей.

Для обсуждаемойпроблемы в особенности интересны данные по дыхательной активности клеток, находящихся на различных стадиях роста. Взаимосвязь дыхания и роста можно проследить на быстрорастущих органах различных тканей корней. Согласно исследованиям ряда лабораторий, клетки меристемы характери­зуются минимальной интенсивностью кислородного дыхания. Зо­на деления отличается, кроме того, высоким дыхательным коэффи­циентом, достигающим нередко величины 2 и больше. Это указы­вает на то, что в дыхательном метаболизме клеток меристемы су­щественное место занимают анаэробные процессы.

У клеток зоны растяжения, для которых характерно усилен­ное новообразование протоплазмы, наблюдается резкое усиление дыхательной активности. Это активирование обусловлено не толь­ко увеличением количества белка, приходящегося на долю мито­хондрий, но и возрастанием удельной активности каждой единицы белка.

Следует отметить, что дыхательная активность тесно связана с содержанием белка, причем в особенности отчетливо эта кор­реляция проявляется, если расчет ведется не на содержащийся в клетке белок, а на единицу белка, синтезируемого клеткой. Факт этот легко понять, если вспомнить, что именно синтетические про­цессы и являются непосредственными потребителями энергии ды­хания.

Вопрос о дыхательной активности клеток зоны дифференциа­ции оказался сложным и пока не может считаться решенным. Имеющиеся по этому вопросу экспериментальные материалы про­тиворечивы. Так, по данным некоторых исследователей, дыхатель­ная активность клеток зоны дифференцировкиниже, чем клеток зоны растяжения, тогда как, согласно данным Н. Г. Потапова и сотр., активность дыхания непрерывно растет от меристемы к клеткам, где формируются корневые волоски. Клетки зоны дифференцировки обладают наибольшей активностью дыхания в пе­ресчете как на белковый азот, так и на одну клетку. В клетках этой зоны наиболее активна цитохромоксидаза, подтверждением чего служит также максимальная величина подавления дыхания азидом .


Страница: