Возникновение злокачественных опухолей
Таким образом, стратегия антисмысловых конструкций широко применима для модификации экспрессии генов. Эта стратегия используется не только для получения растений с новыми качествами, но и для фундаментальных исследований в генетике растений.
Следует упомянуть еще об одном направлении в генной инженерии растений, которое до недавнего времени в основном использовали в фундаментальных исследованиях - для изучения роли гормонов в развитии растений. Суть экспериментов заключалась в получении трансгенных растений с комбинацией определенных бактериальных гормональных генов, например только iaaM или ipt и т.д. Эти эксперименты внесли существенный вклад в доказательство роли ауксинов и цитокининов в дифференцировке растений.
В последние годы этот подход стали использовать в практической селекции. Оказалось, что плоды трансгенных растений с геном iaaM, находящимся под промотором гена Def (ген, который экспрессируется только в плодах), являются партенокарпическими, то есть сформировавшимися без опыления. Партенокарпические плоды характеризуются либо полным отсутствием семян, либо очень небольшим их количеством, что позволяет решить проблему "лишних косточек", например в арбузе, цитрусовых и т.д. Уже получены трансгенные растения кабачков, которые в целом не отличаются от контрольных, но практически не содержат семян.
Остается добавить несколько слов еще об одном аспекте возможностей использования Ti-плазмиды агробактерии. Обезоруженную, лишенную онкогенов Ti-плазмиду ученые активно используют для получения мутаций. Этот метод носит название Т-ДНК-инсерционного мутагенеза. Т-ДНК, встраиваясь в геном растения, выключает ген, в который она встроилась, а по утрате функции можно легко отбирать мутанты. Этот метод замечателен также тем, что позволяет сразу обнаружить и клонировать соответствующий ген. В настоящее время таким способом получено множество новых мутаций растений и соответствующие гены клонированы. В нашей лаборатории М.А. Раменской на основе Т-ДНК мутагенеза получены растения томатов с неспецифической устойчивостью к фитофторозу.
Областей применения трансгенных растений так много, что все имеющиеся сведения невозможно изложить в рамках одной статьи. На уровне лабораторных экспериментов ведутся работы по получению растений, устойчивых к холоду, тяжелым металлам, повышенному содержанию солей и др. Трансгенные растения, устойчивые к гербицидам (химическим соединениям, которые используют для борьбы с сорняками), к вирусам, растения с повышенным содержанием масел и незаменимых аминокислот уже выращивают на миллионах гектаров. Не менее интересен и другой аспект работ - получены трансгенные растения с измененными декоративными свойствами. Один из примеров - это получение растений петунии с разноцветными цветками. На очереди голубые розы с геном, контролирующим синтез голубого пигмента, клонированным из дельфиниума.
Итак, многие надежды уже сейчас превратились в свершения, а агробактерия с ее удивительной Ti-плазмидой в руках ученых стала настоящим инструментом как для познания функционирования растительного генома, так и для решения многих проблем, которые стоят перед сельским хозяйством. К сожалению, в нашей стране трансгенные растения еще остаются на уровне лабораторных экспериментов, поскольку дорога от лаборатории до поля, как и много лет назад, остается непротоптанной, а во многих лабораториях, в том числе и в нашей, уже есть трансгенные растения, которые ждут своего часа.
2. Онкогенез, вызываемый у животных ДНК-вирусами.
Исследования канцерогенеза у животных нередко проводятся на культурах тканей. Если перенести клетки животных, например из органов кур или хомячков, или фибробласты человека в подходящую питательную среду, то на внутренней стенке культурального сосуда они начнут размножаться. Обычно клетки продолжают расти лишь до тех пор, пока не начнут соприкасаться между собой. Из-за контактного торможения образуется только однослойный клеточный газон. Если же эти нормальные клетки инфицировать опухолеродным вирусом, то контактное торможение снимается, клетки продолжают размножаться и начинают надвигаться друг на друга. Многослойный рост наблюдается только у клеток, претерпевших опухолевую трансформацию. Из клеточной массы легко выделить отдельные клетки и таким путем получить чистые линии (клоны) трансформированных клеток.
Вирусы полиомы и SV40 ("Обезьяний вирус 40") относятся к группе паповирусов. Они содержат двухцепочечные кольцевые молекулы ДНК. В эксперименте вирус можно перенести для размножения в клетки тканевой культуры. Размножаясь в некоторых (так называемых пермиссивных) клетках, вирус вызывает их лизис, и по мере его размножения клетки гибнут. В других (непермессивных) клетках вирус ведет себя иначе. В этом случае размножение вируса подавляется, и примерно в одной из 105 клеток вирусная ДНК интегрируется в клеточную ДНК. Такое включение вирусной ДНК в геном клетки-хозяина может приводить к опухолевой трансформации. В трансформированной клетке образуется белок (Т-антиген), который запускается репликацию клеточной ДНК, и в результате начинается размножение клеток. Инъекция такого рода трансформированных клеток животым приводит к быстрому образованию опухолей.
Онкогенез, вызываемый у животных РНК-вирусами.
К образованию опухолей у животных могут быть причастны также и РНК-вирусы – ретровирусы. Они относятся к икосаэдрическим вирусам с оболочкой и содержат (+)РНК-геном (одноцепочечную РНК). В качестве онкогенных вирусов они, например, вызывают саркому Рауса и кур и лейкемию у мышей. Название "ретровирусы" связано с тем, что в их размножении участвует обратная транскриптаза. РНК этих вирусов не может воспроизводиться путем простой репликации – необходима ее предварительная транскрипция в ДНК с последующей интеграцией этой ДНК в одну их хромосом клетки-хозяина. Интеграция – необходимый этап репродукции вируса; только интегрированная вирусная ДНК будет транскрибироваться. Так как интеграция в клеточную ДНК входит в жизненный цикл вируса, частота интеграции очень велика. Вероятно, вирусная ДНК может включаться в клеточную в любом месте.
Размножение вируса не приводит к лизису клетки. Нуклеокапсид образуется внтури клетки, перемещается затем к плазматической мембране и выходит наружу, одетый в оболочку из этой мембраны. Интегрированная ДНК ретровируса реплицируется вместе с геномом клетки-хозяина и поэтому содержится в каждой клетке опухоли (саркомы). Опухолевый рост клеток обусловлен экспрессией вирусного гена "src". Этот ген кодирует белок, который по-видимому, представляет собой киназу, фосфорилирующую белки. Можно думать, что эта киназа участвует в преобразовании дифференцированной клетки в клетку эмбрионального типа.
Недавно была выяснена последовательность оснований в вирусной РНК. Оказалось, что она сходна в последовательностью одного из генов человека. Отсюда можно заключить, что src – это ген животного происхождения, который в результате неточной транскрипции был включен в РНК вируса вместе с вирусными генами и закрепился в ней. Это мог быть ген, кодирующий важный для эмбриональной клетки фактор роста. Таким образом, опухоли, вызываемые ретровирусами, в конечном счете обусловлены переносом какого-то гена животного происхождения в клетку животного.