Вирусы и бактерии. Проблемы СПИДа
в клубок, а капсомеры плотно уложены вокруг неё. Так устроены вирусы
полиомиелита, ящура и др.
При спиральной (палочковидной) симметрии нуклеокапсида нить вируса
закручена в виде спирали, каждый её виток покрыт капсомерами, темно
прилегающими друг к другу. Структуру капсомеров и внешний вид вирио
нов можно наблюдать с помощью электронной микроскопии.
Большая часть вирусов, вызывающих инфекции у человека и животных,
имеет кубический тип симметрии. Капсид почти всегда имеет форму ико
саэдра - правильного двадцатигранника с двенадцатью вершинами и с
гранями из равносторонних треугольников.
Многие вирусы помимо белкового капсида имеют внешнюю оболочку.
Кроме вирусных белков и гликопротеинов она содержит ещё и липиды,
позаимствованные у плазматической мембраны клетки-хозяина. Вирус
гриппа - пример спирального вириона в оболочке с кубическим тип симметрии.
Современная классификация вирусов основана на виде и формы их нук
леиновой кислоты, типе симметрии и наличии или отсутствие внешней
оболочки.
1.2 Размножение вирусов.
Размножение вирусов происходит особым, ни с чем не сравнимым спо
собом. Сначала вирионы проникают внутрь клетки, и освобождаются ви
русные нуклеиновые кислоты. Затем «заготавливаются» детали будущих
вирионов. Размножение заканчивается сборкой новых вирионов и выходом
их окружающую среду.
Рассмотрим простейший способ размножения вирусов (рис. 2). Предс
тавим себе некий обобщённый вариант вирусной частицы, состоящей из
двух основных компонентов - нуклеиновой кислоты (РНК или ДНК), зак
лючённой в белковой чехол (оболочку). Встреча вирусов с клетками на
чинается с его адсорбций, то есть прикрепления к клеточной стенки,
плазматической мембране клетки. Причём каждый вирион способен прик
репляться лишь к определённым клеткам, имеющие специальные рецепто
ры. На одной клетке могут адсорбироваться десятки и даже сотни вири
онов. Затем начинается внедрение или проникновение вириона в клетку,
которое осуществляет она сама. Этот процесс называется виропексисом.
Клетка как бы «втягивает» прикрепившихся вирионов внутрь.
Более просто устроены бактерии не способны сами захватывать вирионы
из окружающей среды. Этим,по-видимому, и можно объяснить наличие у
поражающих их вирусов сложного и совершенного аппарата, подобно
шприцу, впрыскивающего нуклеиновые кислоты.
В зараженной клетке бактериальные ферменты репликации синтезируют
комплементарную ей цепь, которая служит матрицей для образования фа
говых ДНК. Они соединяются с фаговыми белками, также синтезированные
бактериальными ферментами, и новые фаги покидают клетку-хозяина.
Разнообразие видов и форм вирусов нуклеиновых кислот определяет и
разнообразие способов их репликации. Бактериофаг (вирус, который по
селяется в клетках бактерий) Т4 имеет одну двухцепочечную линейную
молекулу, состоящую из 160 x 10^530 пар нуклеотидов. В ней закодировано
более 150 различных белков, в том числе более 30 белков, участвующих
в репликации фаговой ДНК. Обезьяний вирус SV40 имеет двухцепочечную
кольцевую ДНК. Репликация у вирусов с двухцепочечной ДНК принципи
ально не отличается от репликации бактериальной и или эукариотичес
кой ДНК.
Многие вирусы растений содержат одну линейную молекулу РНК, напри
мер первый из описанных вирус табачной мазаики (ВТМ). Молекула РНК
ВТМ заключена в белковый капсид, состоящий из 2130 идентичных поли
пептидных субъединиц.
Репликация РНК вируса табачной мозаики осуществляется ферментом,
Называемым 1 РНК-зависимой РНК-полимеразой 0, закодированной в геноме
вируса. Сначала этот фермент строит комплементарную РНК, а затем по
ней, как по матрице, синтезирует множество вирусных РНК.
Поразительно, как вирусы, которые в десятки и даже сотни раз мень
ше клеток, умело и уверенно распоряжаются клеточным хозяйством. Для
построения себе подобных они используют клеточные материалы и энер
гию. Размножаясь, они истощают клеточные ресурсы и глубоко, часто
необратимо, нарушают обмен веществ, что в конечном счёте является
причиной гибели клеток.
1.3 Болезнетворные свойства вирусов.
Диапазон патологических процессов, вызываемых вирусами, очень ши
рок (таб.). Здесь и так называемые генерализованные инфекции
(грипп, корь, бешенство, свинка, оспа и др.), и местные поражения
кожи и слизистых оболочек (герпес, бородавки), и болезни отдельных
органов и тканей (миокардиты, гепатиты, лейкозы), и, наконец, злока
чественные образования (рак, саркома у животных). Распространёными
заболеваниями остаются грипп и острые респираторные заболевания,
корь, вирусный гепатит, тропические лихорадки, герпес и другие ви
русные болезни. В природе существует мало чисто человеческих виру
сов; все они близки и аналогичны соответствующим вирусам животным.
Какова вероятность встречи с вирусами? С возбудителями гриппа, ко
ри, свинки, герпеса, цитомегалии, гастроэнтерита и различных ОРЗ
контакты практически неизбежны (90-100%); с вирусами вызывающими ге
патит, краснуху, бешенство, везикулярный стоматит, полиомиелит, мио
кардиты, встреч можно избежать. Так или иначе, но человек на протя
жении всей жизни подвергается опасности заразиться и заболеть ка
кой-либо вирусной инфекцией, хотя существует определённая возрастная
чувствительность к вирусам.
Ещё не родившемуся плоду человека грозят два вируса - краснухи и
цитомегалии, которые передаются внутриутробно и очень опасны. Ново
рождённые и грудные младенцы ещё более уязвимы: им угрожают вирусы
герпеса 1-го и 2-го типа и вирус гепатита. Также подстерегают их но
вые опасности - грипп, различные ОРЗ, полиомиелит, острые гастроэн
териты.
Итак, вирусы являются постоянными спутниками человека от рождения
вплоть до глубокой старости. Считается, что при средней продолжи
тельности жизни 70 лет около 7 лет человек болеет вирусными заболе
ваниями. Подсчитано, что в среднем человек ежегодно сталкивается с 2
и более вирусными инфекциями, а всего за жизнь вирусы до 200 раз
проникают в его
организм. К счастью, далеко не все встречи заканчи
ваются болезнями, так как в процессе эволюции человеческий организм
научился успешно справляться со многими вирусами.
1.4 Полезные вирусы.
Существуют и полезные вирусы. Сначала были выделены и испытаны ви
русы - пожиратели бактерий (бактериофаги). Однако последовали неуда
чи. Это было связано с тем, что в организме человека бактериофаги
действовали на бактерии не так активно, как в пробирке. Кроме того,
бактерии очень быстро приспосабливались к бактериофагам и станови-
лись не чувствительными к их действию. После открытия антибиотиков
бактериофаги как лекарство отступили на задний план.
Полезными оказались вирусы поражающие позвоночных животных и насе
комых. В 50-х годах 20 века в Австралии остро встала проблема с ди