Взаимодействие наук
Рефераты >> Философия >> Взаимодействие наук

Большая сложность и высокая лабильность живых объектов ставит биофизика в трудные условия и вынуждает его перерабатывать физические методы, создавая специализированные биофизические методы и приемы. Стремление изучать по возможности ненарушенную или лишь минимально измененную живую систему вынуждает биофизиков пользоваться очень слабыми источниками излучения при исследовании оптических свойств клеток, слабыми электрическими токами при измерении электрических параметров и т.п. Поэтому же в своих исследованиях биофизики должны широко использовать усилительную технику.

За последнее время четко выявился ряд теоретических и практических проблем, которые могут и должны решаться именно биофизикой. Биофизика занимается, в первую очередь, вопросами размена энергии в биологическом субстрате, исследованием роли субмикроскопических и физико-химических структур в жизнедеятельности клеток и тканей, возникновением возбуждения и происхождением биоэлектрических потенциалов, вопросами авторегулирования физико-химических процессов в живых организмах. Конкретные задачи современной биофизики весьма разнообразны.

Одна из основных задач биофизики – выявление физических и физико-химических параметров, характерных для живых объектов. Известно, что характерным свойством живых клеток является наличие электрического потенциала между клеткой и окружающей средой; способность удерживать ионный градиент по калию и натрию между клеткой и средой; способность поляризовать электрический ток. При гибели живого объекта эти свойства исчезают. В зафиксированных гистологических препаратах выявляются надмолекулярные структуры, отсутствующие в живых неповрежденных клетках. В то же время тонкие молекулярные структуры клетки, обеспечивающие ее основные прижизненные свойства, оказываются нарушенными. Поэтому именно вопрос о выявлении истинных молекулярных структур и определение прижизненных физико-химических параметров биологических объектов приобретает огромное значение.

Одним из важнейших направлений биофизики является изучение биологического действия ионизирующих излучений. Эта проблема разносторонне изучается различными дисциплинами (физиологией, биохимией, патологией и др.), но самая существенная роль отводится здесь биофизике. Важнейшим моментом в действии лучистой энергии на биологический субстрат является первичный переход физической энергии, поглощенной биологическим субстратом, в хнмическую энергию и развитие первичных химических реакций. При этом происходит образование высокоактивных радикалов и ионов, которые и служат центрами первичных реакций. Первичный выход активных химических продуктов определяет все дальнейшее развитие лучевого поражения. Поэтому в настоящее время первостепенное значение приобретает исследование химической природы первичных радикалов и кинетики радикальных реакций. Отсюда вытекает и важная задача торможения радиационно-химических реакций различными ингибиторами природного происхождения.

Ослабление радиационного эффекта – вполне реальная задача. При введении в организм перед облучением некоторых веществ-ингибиторов осуществляется так называемая химическая защита. Биофизика выявляет физико-химические свойства молекул веществ-ингибиторов и на основе общих принципов дает методы

подбора необходимых соединений.

Вопрос размена и передачи энергии при фотохимических процессах стоит в основе другой важной биофизической проблемы – проблемы механизма фотосинтеза. С этой проблемой связан также еще один принципиальный для биофизики вопрос: вопрос о возможности миграции энергии и о механизме такой миграции. Есть основания полагать, что химическая реакция при фотосинтезе протекает не в том месте, где осуществляется первичный процесс взаимодействия квантов света с веществом, а на некотором расстоянии , т.е. там, куда переносится поглощенная энергия.

В таком же аспекте изучаются биофизикой первичные механизмы , лежащие в основе зрительного акта, исследуются продукты фотохимических реакций, происходящих при поглощении энергии света пигментами зрительных рецепторов.

Следующим важным направлением биофизики является исследование проницаемости клеток и тканей. Физико-химическая биология уже давно занимается выявлением закономерностей проникновения вещества в живые клетки. Это практически важный вопрос, так как с проницаемостью связано фармакологическое :действие лекарственных веществ и токсическое действие различных ядов. Проникновение веществ в клетки зависит в первую очередь от физико-химических свойств молекул, их растворимости, их электрических свойств – распределения зарядов. Биофизика должна установить коррелятивную связь между этими свойствами ващества и его способностью проникать в клетки. С другой стороны , проницаемость связана со способностью поверхностных клеточных мембран пропускать те или иные вещества. Поэтому биофизика изучает и физико-химические свойства биологических мембран и способы повышения или понижения проницаемости действием различных агентов. Последнее имеет большое значение для лечебных мероприятий, для применения ядовитых инсектицидов в сельском хозяйстве, при дезинфекции и т. п.

Протоплазма клеток состоит из высокополимерных веществ, в основном полиэлектролитов, и обладает свойствами, присущими этому классу соединений. Углубленные исследования в этой области открывают новые возможности для изучения свойств протоплазмы. В частности, в настоящее время уже удалось значительно приблизиться к пониманию вопроса об избирательном поглощении калия живыми клетками.

Изучение физико-химических превращений биополимеров в клетке тесно связано с выявлением механизма возникновения возбуждения и биоэлектрических потенциалов как в недифференцированных клетках, так и в специализированных нервных и мышечных элементах. Физиология уже давно использует биоэлектрические потенциалы для оценки физиологических и патологических состояний организма. Перед биофизикой стоит другая большая задача – выявить физико-химические причины появления и развития биоэлектрических потенциалов, определить их энергетические источники и этим открыть путь для более глубокого анализа физико-химического состояния клеток в норме и патологии.

Биофизика вместе с другими дисциплинами принимает сейчас участие в расшифровке важнейших вопросов о физико-химических механизмах передачи наследственных свойств и изучает механизмы, определяющие устойчивость вида и его изменчивость. При этом анализируются те силы, которые вызывают деление и расхождение хромосом, физико-химические основы взаимодействия нуклеиновых кислот, физико-химическая природа гена и т.д.

Наконец, в настоящее время большое внимание биофизики привлекает проблема авторегуляции. В изучении авторегуляции заинтересована не только биология, но и техника, так как некоторые механизмы авторегулирования, существующие у живых организмов, могут послужить источником новых идей для различных областей техники. Действительно, в биологических системах существуют весьма совершенные механизмы для регулирования химических реакций, лежащих в основе энергетического обмена веществ. В клетках с удивительным постоянством поддерживаются величины рН и ионный баланс калия и натрия даже при значительных изменениях концентрации во внешней среде. Биологические системы очень хорошо координируют уровни протекания энергетических процессов. При этом, несмотря на высокую лабильность и способность реагировать на незначительные изменения во внешней среде, биологические системы обладают высокой надежностью. Авторегулирующие механизмы играют большую роль в приспособлении животных и растений к изменяющимся условиям внешней среды. Для понимания вопросов авторегулирования требуется разработка термодинамики и кинетики биологических процессов, что и составляет важнейшую задачу биофизики.


Страница: