Гелиоэнергетика: состояние и перспективы
Рефераты >> Физика >> Гелиоэнергетика: состояние и перспективы

Объективный анализ опытов Зеебека (даже при тогдашнем уровне физических знаний) мог бы дать однозначное объяснение эффекту, обусловив его воз­никновением в подобной цепи электрического тока, тем более, что воздействие на стрелку прекращалось при размыкании цепи. Однако Зеебек предложил собственную интерпретацию эффекта, объясняющую его намагничиванием материалов под действием температуры и разработал в качестве ее следствия смелую гипотезу происхождения земного магнетизма, суть которой сводится к тому, что земное магнитное поле образовалось в результате разности температур между полюсами и экваториальным поясом Земли. Заблуждение Зеебека сыграло положи­тельную роль: чтобы опровергнуть электрическое про­исхождение термоэлектрических токов, он на самых раз­личных материалах сопоставлял явление электризации (контактный потенциал) или ряд Вольта с воздействием разности температур на магнитную стрелку и показывал различие между ними.

Составленный Зеебеком обширный термоэлектрический ряд (табл. 5) представляет интерес и поныне. В современных обо­значениях (α — термоэлектродвижущая сила на 1° С и σ — удельная электропроводность) ряд Зеебека определяется произведением ασвместо величины α2σ/χ (где χ удельная теплопроводность), которая харак­теризует термоэлектрические свойства материала.

На основе эффекта Зеебека и создаются термоэлектрогенераторы. На рис.9 показана типичная конструкция термо­электрического генератора на основе проводников. Обычно проводники соединяются последовательно, так как разность потенциалов на выходе каждой пары проводников в реальных устройствах имеет величину порядка 300—400 мкВ на единицу, разности темпера­тур. Поэтому при разности температур 500 К выходное напряжение на каждой паре элементов составляет не более 0,2 В.

Рис. 9. Термоэлектрический генератор.

Работу реальных устройств сопровождают опреде­ленные необратимые явления. Возможна теплопере­дача от источника к охладителю непосредственно через элементы генератора. Внутри элементов при протекании тока выделяется джоулево тепло.

Для любой пары термоэлектрических элементов скорость теплопередачи через проводимость пропорци­ональна разности температур на их концах (при усло­вии отсутствия рассеяния тепла). Тогда справедливо уравнение

Qт=K (T1-T2), (3)

где К зависит от теплопроводности материалов, пло­щади поверхности и длины элементов.

Джоулево тепло, выделяющееся при прохождении тока I, равно

Qдж=I2R, (4)

Где К — общее сопротивление элементов, зависящее (как и теплопроводность) от удельного сопротивления материала, размеров и формы элементов. Если опять же предположить, что тепловые потери отсутствуют, то половина энергии, преобразованной в джоулево тепло, проходит к каждому из соединений.

Таблица 5

Термоэлектрические ряды

Ряд Зеебека (1822г.)

Ряд Юсти (1948)

Ряд Мейснера (1955)

Металлы и их соединения

Металлы

Полупроводники

PbS

Bi

Ni

Co

Pd

Pt

U

Au

Cu

Rh

Ag

Zn

C

Cd

Сталь

Fe

As

Sb

SbZn

Bi-80

Co-21

Ni-20

K-14

Pd-8

Na-7

Pt-5

Hg-5

C-3.5

Al-1.5

Rh+1

Zn+1.5

Ag+1.5

Au+1.5

Cu+2.0

W+2.5

Fe+12.5

Sb+42

Si+44

Te+49

Bi-70

Mi-18.0

Co-18.5

K-12

Pd-6

Pb-0.1

Sn+0.1

Rh+2.5

Zn+2.9

Mo+5.9

Fe+16

Sb+35

Te+400

Se+1000

MnS-770

ZnO-714

CuO-696

Fe3О4-500

FeS2-430

MoS-200

CuO-139

CdO-41

CuS-7

FeS+26

CdO+30

NiO+240

Mn2О3+385

Cu2O3+474

CuO+1120

Примечание: Величина термо-ЭДС дана в мкВ/град.

Получаемая в нагрузке мощность от такого генератора определяется из соотношения

P=S(T1-T2)I - I2R,

где S коэффициент Зеебека зависящий от материала проводника.

Если считать неизменными другие величины, значение КПД определяется только величиной тока. Установлено, что с уменьшением тока КПД сначала растет, а затем падает. Максимальное значение КПД зависит от параметра Z характеризующего некоторую совокупность свойств проводника, называемого добротностью. Для металлов Z очень мала, поэтому для изготовления ТЭГ применяют легированные полупроводники, для которых добротность при определенных температурах не превышает 0.0005 на 1 К. Тогда при температуре нагревателя 1000 К и охладителя 300 К, общий КПД преобразования составляет лишь около 7% и то при концентрации солнечного излучения с помощью зеркал.

Несмотря на то, что КПД современных термоэлек­трических генераторов очень мал, интерес к ним про­должает расти. Если учесть, что еще несколько деся­тилетий назад КПД термоэлектрических генераторов был в 10 раз ниже достигнутого в настоящее время, а поиск новых более совершенных материалов продолжается, то можно надеяться на дальнейшее усо­вершенствование этого типа генераторов. Например, если удастся достигнуть величины добротности 0,005 на 1К в диапазоне температур от 300 до 1000 К,тоКПД генератора увеличится с 7 до 31%.


Страница: