Методика преподавания темы Элементы логики в курсе математики 5-6 классовРефераты >> Педагогика >> Методика преподавания темы Элементы логики в курсе математики 5-6 классов
Учебное пособие [7] предназначено для работы по программам Открытого лицея и ориентировано на развитие творческих способностей и повышения культуры мышления школьников. Овладение основами логики поможет учащимся в изучении школьных предметов, в том числе на расширенном и углубленном уровне в профильных, гимназических и лицейских классов.
Материал дается в доступной форме, в виде рассказа. В ходе рассказа автор приводит исторические сведения, что вызывает еще больший интерес к теме. Даются все основные понятия, связанные с логикой и необходимые для успешного обучения школьников в 5 классе. После теоретических сведений даются задачи по новой теме для работы в классе, причем автор помогает разобраться в некоторых из них, а к некоторым дает пояснения. После практики автор предлагает написать тест, ответы к которому есть в конце книги. Также предлагается и домашнее задание.
В этом пособии рассматриваются следующие темы: отрицание высказываний, понятие отрицания, решение задач с помощью отрицания, свойства отрицания, отрицание отрицания, поиск противоречия, утверждения, одинаковые по смыслу, умозаключения. А так же такие темы как логические операции и признаки делимости, свойства импликации, конъюнкция высказываний, дизъюнкция высказываний, отрицание конъюнкции и дизъюнкции. Здесь много нестандартных задач, и на многие дается решение.
К каждой теме даны задачи, решения некоторых задач подробно рассмотрены, во многих задачах рассматривается не один способ решения. Почти в каждой теме присутствуют тесты, на каждый тест отводится определенное количество времени. В конце пособия даны ответы к задачам и тестам.
Знакомясь с логикой с помощью данного пособия, ребята научатся логически правильно мыслить, составлять таблицы истинности, а в конце ответив на вопросы теста, смогут оценить свои успехи.
Проведенный анализ учебников показывает, что количество задач содержащие элементы логики намного меньше ожидаемого и недостаточно для формирования логической культуры у учащихся. Обучение математике сводится к проработке отдельных частей курса элементарной математики, к решению типичных задач и обучению, основным приемам их решения.
Учитель вынужден идти по пути решения задач заданного типа с последующим формированием и развитием навыков подведения под тип. Такое преподавание является одной из причин того, что, за редким исключением, учащиеся не умеют решать задачи. Они с трудом выделяют из задачи данные и искомые величины, плохо анализируют их взаимосвязь, неудачно строят логические цепочки и делают выводы, то есть говоря более широко, у них отсутствуют навыки логического конструирования.
Многолетний опыт показал, что чаще всего добиваются хороших результатов в учебе, успешно поступают в ВУЗы те, кто в среднем звене школы овладел умением самостоятельно мыслить, творчески подходить к выполнению любого задания, искать различные варианты решения и отбирать среди них наиболее оптимальный. И целиком успех зависит от учителя, от его умения и желания подойти к обучению творчески, не зацикливаясь на учебнике, предусмотренном учебным планом.
Равносильность предложений
Цель: сформировать понятие равносильности, научиться применять на практике полученные знания.
Эту тему дают обычно уже в конце 5 класса, когда ученики уже знакомы со знаком равносильности, который они использовали для краткой записи свойств делимости.
Следует отметить, что понятие равносильности предложений относится не столько к математике, сколько к естественному языку. Как в обычном, так и в математическом языке одну и ту же мысль можно выразить несколькими разными способами. Например:
1) 32 < 64, 64 > 32.
2) Саша – брат Кати, Катя – сестра Саши.
3) 5x + 10 = 15, x = 1.
Обратите внимание на знак равносильности, который употребляется для краткой записи утверждения и обозначает, что два предложения означают одно и то же. Например:
3 < 5 5 > 3
Обратите внимание на то, что если убрать из него стрелки слева и справа, то останется знак равенства. Знак равенства между двумя числовыми выражениями показывает, что эти выражения имеют одно и то же значение. Точно так же, как при преобразованиях числовых выражений мы пишем цепочку равенств:
Так же следует отметить, что равносильные высказывания одновременно истинны или ложны. Например, высказывания «Некоторые цветы бывают синими» и «Встречаются синие цветы» истинны. Но даже очень похожие по виду выказывания могут быть одно истинным, а другое ложным. Например, высказывания «Все кошки четвероногие» и «Все четвероногие - кошки», не являются эквивалентными, так как первое высказывание истинное, а второе ложное.
На этом этапе следует закрепить материал. Задания могут быть следующего содержания:
2) Выяснить, какие из приведенных пар высказываний являются эквивалентными:
а) Число x делится на 2.
Число x оканчивается на 2.
б) Хищники не едят траву.
Нет хищников, которые не едят траву.
в) Не все металлы тонут в воде.
Есть металлы, которые не тонут в воде.
3) Используя знак равносильности, записать решение уравнений:
а) 2а – 3 = 25
б) 34 + 18 * в = 43
3) Записать в виде равенств утверждения, равносильные следующим:
а) Число m на 5 больше числа р.
б) При делении числа а на число b получается в частном с.
4) Какие из следующих утверждений верны:
а) Число x в 2 раза больше y x = y + 2
б) Число m составляет 30 % числа n m = n/ 100 * 30
в) Углы А и В смежные Сумма углов А и В равна 180 градусов.
Отрицание высказываний
Эту тему можно ввести в начале 6 класса, т. к. здесь ученики начинают решать более сложные задачи, которые требуют правильности в рассуждениях.
Цель: сформировать понятие отрицания, научиться строить отрицание высказываний, изучить закон исключенного третьего, научиться применять на практике полученные знания.
Мотивация: нередко в жизни людям приходится спорить. Каждый в споре, доказывая свою правоту, убеждает собеседника, что тот не прав. Но всегда в споре кто-то прав, а кто-то ошибается. Тогда говорят, что их утверждения отрицают друг друга. Каждое из них называется отрицанием другого.
Приведем примеры предложений, в которых в каждой паре высказываний одно является отрицанием другого.
№ |
Высказывание |
Отрицание |
1. |
У Маши есть котенок. |
У Маши нет котенка. |
2. |
100 больше, чем 50. |
100 не больше, чем 50. |
3. |
Верно, что все птицы летают. |
Неверно, что все птицы летают. |
4. |
10 делится на 4. |
10 не делится на четыре. |
5. |
Щенок Миши спит на кресле. |
Щенок Миши не спит на кресле. |