Методика преподавания темы Элементы логики в курсе математики 5-6 классовРефераты >> Педагогика >> Методика преподавания темы Элементы логики в курсе математики 5-6 классов
Значительный толчок к новому периоду развития математической логики дало создание в первой половине XIX века великим русским математиком Н. И. Лобачевским (1792-1856 гг.) и независимо от него венгерским математиком Я. Бояи (1802-1860 гг.) неевклидовой геометрии. Кроме того, создание анализа бесконечно малых подвело к необходимости обоснования понятия числа как фундаментального понятия всей математики. Довершали картину парадоксы, обнаруженные в конце XIX века в теории множеств: они отчетливо показали, что трудности обоснования математики являются трудностями логического и методологического характера. Таким образом, перед математической логикой встали задачи, которые перед логикой Аристотеля не возникали. В развитии математической логики сформировались три направления обоснования математики, в которых создатели по-разному пытались преодолеть возникшие трудности.
Основоположником первого направления явился немецкий математик и логик Г. Фреге (1848-1925 гг.). Он стремился всю математику обосновать через логику, применил аппарат математической логики для обоснования арифметики, построив первую формальную логическую систему. Кроме того, им и независимо от него Ч. Пирсом были введены в язык алгебры логики предикаты, предметные переменные и кванторы, что дало возможность применить этот язык к вопросам оснований математики. Задачу аксиоматического построения арифметики, геометрии и математического анализа ставил перед собой итальянский математик Дж. Пеано (1858-1932 гг.)
Немецкий математик Д. Гильберт (1862-1943 гг.) предложил другой путь преодоления трудностей в основаниях математики, путь, имеющий в своей основе применение аксиоматического метода. Открытие австрийским логиком К. Геделем (1906-1978 гг.) в 1930-1931 годах неполноты формализованной арифметики показало ограниченность гильбертовской программы обоснования математики. Тем не менее, работы Гильберта и его последователей привели к глубокой разработке аксиоматического метода и окончательному осознанию его фундаментальной роли в математике.
Представители направления, основанного голландским математиком Л. Брауэром (1881-1966 гг.) в начале XX века, предложили отказаться от рассмотрения бесконечных множеств как завершенных совокупностей, а также от логического закона исключенного третьего. Ими признавались только такие математические доказательства, которые конструктивно строили тот или иной объект, и оспаривались чистые доказательства существования. Они построили специфическую математику, имеющую специфические особенности, еще раз подчеркнули различие между конструктивным и неконструктивным в математике.
XX век стал веком бурного развития математической логики, формирования многочисленных новых ее разделов. Были построены различные математические теории множеств, выработано несколько формализаций понятия алгоритма, а сама теория алгоритмов была настолько развита, что ее методы стали проникать в другие разделы математической логики, а также в другие математические дисциплины. Так, на стыке математической логики и алгебры возникла теория моделей. Были созданы многочисленные новые неклассические логические системы. Немалый вклад в развитие математической логики внесли и советские математики Н. А. Васильев, И. И. Жегалкин, А. Н. Колмогоров, П. С. Новиков, А. А. Марков, А. И. Мальцев, С. А. Яновская. Кроме того, в XX веке началось глубокое проникновение идей и методов математической логики в технику, кибернетику, вычислительную математику, структурную лингвистику.
Анализ учебной литературы.
В процессе обучения школьников математике большую роль играет учитель, но немаловажное значение имеет и учебник или то учебное пособие, с которым ученик имеет возможность самостоятельно поработать, либо повторить пройденное.
В настоящее время не все учебники содержат материал, который познакомил бы учеников с элементами логики в полной мере. В ныне существующих учебниках рассматриваются вопросы, связанные с высказываниями и их равносильными преобразованиями. В основном, это одно или двуместные высказывания. Здесь изучаются уравнения, тождества, тождественно равные выражения, неравенства, системы уравнений и неравенств, а также их свойства. Этот материал дается с целью использования его при решении текстовых задач. Проанализируем некоторые из учебников.
1) Дорофеев, Г. В. Математика. 5 класс. В двух частях. Л. Г. Петерсон// М.: «Баласс», «С-инфо», 1998.
Учебник [5] состоит из двух частей, каждая из которых поделена на главы.
В первых двух параграфах первой главы автор предлагает изучить математические выражения и математические модели. Здесь ребята смогут научиться записывать, читать, составлять выражения и находить их значения, что несомненно поможет в изучении последующих тем, а именно в переводе условия задачи на математический язык, в работе с математическими моделями.
Но больше интересует пункт – «Язык и логика».
Здесь автор предлагает изучить следующие темы:
1. Высказывания.
2. Общие утверждения.
3. «Хотя бы один».
4. О доказательстве общих утверждений.
5. Введение обозначений.
В этом параграфе рассматривается понятие высказывания или утверждения и связанные с ним простейшие понятия. При этом автор отмечает, что вместо слов «верное» и «неверное» часто говорят истинное и ложное. Автор также дает понятие темы (то, о чем говорится) и ремы (то, что сообщается). Во втором пункте автор знакомит ребят с общими утверждениями. Определяются утверждения, в которых все элементы некоторого множества обладают данным свойством, то есть общие утверждения, и утверждения, в которых хотя бы один элемент в заданном множестве обладает определённым свойством, то есть утверждения о существовании. В четвертом пункте автор рассказывает о доказательстве общих утверждений методом перебора, который был уже изучен ранее. Но метод перебора не может быть применен для бесконечных множеств. В связи с этим в следующем пункте автор вводит обозначения, то есть предлагает использовать математический язык.
Материал рассмотренного параграфа применяется в темах, которые автор рассматривает далее. Например, автор рассматривает делимость натуральных чисел. Уже с самого начала, когда он знакомит ребят с основными понятиями, говорится об истинности утверждения: число 27 делится на 3.
В номере 377 нужно из букв, соответствующих истинным высказываниям, составить математический термин.
Во многих заданиях применяется нестандартная формулировка. Например, в 400 номере нужно проверить истинность высказывания:
В пункте «Делимость суммы и разности» в номере 497 ученикам предлагается привести контрпример, опровергающий утверждение:
Если ни одно слагаемое не делится на данное число, то сумма не делится на это число.
В первых четырех параграфах второй главы автор дает понятие делителя и кратного, знакомит с простыми и составными числами, рассматривает делимость произведения, суммы и разности, признаки делимости и возвращается к простым числам, рассматривая их делимость.